amphibians
Latest
Predator-prey interactions: the avian visual sensory perspective
My research interests are centered on animal ecology, and more specifically include the following areas: visual ecology, behavioral ecology, and conservation biology, as well as the interactions between them. My research is question-driven. I answer my questions in a comprehensive manner, using a combination of empirical, theoretical, and comparative approaches. My model species are usually birds, but I have also worked with fish, mammals, amphibians, and insects. I was fortunate to enrich my education by attending Universities in different parts of the world. I did my undergraduate, specialized in ecology and biodiversity, at the "Universidad Nacional de Cordoba", Argentina. My Ph.D. was in animal ecology and conservation biology at the "Universidad Complutense de Madrid", Spain. My two post-docs were focused on behavioral ecology; the first one at University of Oxford (United Kingdom), and the second one at University of Minnesota (USA). I was an Assistant Professor at California State University Long Beach for almost six years. I am now a Full Professor of Biological Sciences at Purdue University.
Young IBRO NextInNeuro Webinar - The retinal basis of colour vision: from fish to humans
Colour vision is based on circuit-level comparison of the signals from spectral distinct types of photoreceptors. In our own eyes, the presence of three types of cones enable trichromatic colour vision. However, many phylogenetically ‘older’ vertebrates have four or more cone types, and in almost all their cases the circuits that enable tetra- or possibly even pentachromatic colour vision are not known. This includes the majority of birds, reptiles, amphibians, and bony fish. In the lab we study neuronal circuits for colour vision in non-mammalian vertebrates, with a focus on zebrafish, a tetrachromatic surface dwelling species of teleost. I will discuss how in the case of zebrafish, retinal colour computations are implemented in a fundamentally different, and probably much more efficient way compared to how they are thought to work in humans. I will then highlight how these fish circuits might be linked with those in mammals, possibly providing a new way of thinking about how circuits for colour vision are organized in vertebrates.
The evolutionary origins of cortical cell types
In the last 500 million years, the dorsal telencephalon changed like no other region of the vertebrate brain. Differences range from the six-layered neocortex of mammals, to the small three-layered cortex of reptiles, and the complete absence of lamination in birds. These anatomical differences have prompted endless discussions on the origins and evolution of the cerebral cortex. We have approached this problem from a cell type and transcriptomics perspective. This reveals a more granular picture, where different cell types and classes have followed independent trajectories of evolutionary change. In this presentation, I will discuss how the molecular analysis of cell types in the brains of turtles, lizards and amphibians is updating our views on the evolution of the cerebral cortex, and the new questions emerging from these results.
Adeno-associated viral tools to trace neural development and connectivity across amphibians
FENS Forum 2024
amphibians coverage
4 items