TopicNeuroscience

analysis tools

Latest

SeminarNeuroscience

Current and future trends in neuroimaging

Andy Jahn
fMRI Lab, University of Michigan
Dec 6, 2023

With the advent of several different fMRI analysis tools and packages outside of the established ones (i.e., SPM, AFNI, and FSL), today's researcher may wonder what the best practices are for fMRI analysis. This talk will discuss some of the recent trends in neuroimaging, including design optimization and power analysis, standardized analysis pipelines such as fMRIPrep, and an overview of current recommendations for how to present neuroimaging results. Along the way we will discuss the balance between Type I and Type II errors with different correction mechanisms (e.g., Threshold-Free Cluster Enhancement and Equitable Thresholding and Clustering), as well as considerations for working with large open-access databases.

SeminarNeuroscience

Analyzing artificial neural networks to understand the brain

Grace Lindsay
NYU
Dec 16, 2022

In the first part of this talk I will present work showing that recurrent neural networks can replicate broad behavioral patterns associated with dynamic visual object recognition in humans. An analysis of these networks shows that different types of recurrence use different strategies to solve the object recognition problem. The similarities between artificial neural networks and the brain presents another opportunity, beyond using them just as models of biological processing. In the second part of this talk, I will discuss—and solicit feedback on—a proposed research plan for testing a wide range of analysis tools frequently applied to neural data on artificial neural networks. I will present the motivation for this approach as well as the form the results could take and how this would benefit neuroscience.

SeminarNeuroscienceRecording

Learning the structure and investigating the geometry of complex networks

Robert Peach and Alexis Arnaudon
Imperial College
Sep 25, 2021

Networks are widely used as mathematical models of complex systems across many scientific disciplines, and in particular within neuroscience. In this talk, we introduce two aspects of our collaborative research: (1) machine learning and networks, and (2) graph dimensionality. Machine learning and networks. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and sometimes overlapping) characteristics of a network. We have developed hcga, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. Taking inspiration from hctsa, hcga offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that hcga outperforms other methodologies (including deep learning) on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features, which we exemplify on a dataset of neuronal morphologies images. Graph dimensionality. Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogeneities, or to intrinsically discrete systems such as networks. Deviating from approaches based on fractals, here, we present a new framework to define intrinsic notions of dimension on networks, the relative, local and global dimension. We showcase our method on various physical systems.

SeminarNeuroscience

Uncertainty in perceptual decision-making

Janneke F.M. Jehee
Center for Cognitive Neuroimaging, Donders Institute for Brain
Jan 13, 2021

Whether we are deciding about Covid-related restrictions, estimating a ball’s trajectory when playing tennis, or interpreting radiological images – most any choice we make is based on uncertain evidence. How do we infer that information is more or less reliable when making these decisions? How does the brain represent knowledge of this uncertainty? In this talk, I will present recent neuroimaging data combined with novel analysis tools to address these questions. Our results indicate that sensory uncertainty can reliably be estimated from the human visual cortex on a trial-by-trial basis, and moreover that observers appear to rely on this uncertainty when making perceptual decisions.

analysis tools coverage

4 items

Seminar4

Share your knowledge

Know something about analysis tools? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how analysis tools research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.