Latest

SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 23, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscience

Selectively Silencing Nociceptor Sensory Neurons

Clifford J. Woolf
Harvard Medical School
Nov 18, 2021

Local anesthetics decrease the excitability of all neurons by blocking voltage-gated sodium channels non-selectively. We have developed a technology to silence only those sensory neurons – the nociceptors – that trigger pain, itch, and cough. I will tell you why and how we devised the strategy, the way we showed that it works, and will also discuss its implications for treating multiple human disorders.

SeminarNeuroscience

Selectively Silencing Nociceptor Sensory Neurons

Clifford J. Woolf
Harvard Medical School
Sep 23, 2021

Local anesthetics decrease the excitability of all neurons by blocking voltage-gated sodium channels non-selectively. We have developed a technology to silence only those sensory neurons – the nociceptors – that trigger pain, itch, and cough. I will tell you why and how we devised the strategy, the way we showed that it works, and will also discuss its implications for treating multiple human disorders.

SeminarNeuroscienceRecording

Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia

Emery N Brown
Massachusetts Institute of Technology
Jan 27, 2021

General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), antinociception (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate this effect by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how these dynamics change systematically with different anesthetic classes and with age. As a consequence, we have developed a principled, neuroscience-based paradigm for using the EEG to monitor the brain states of patients receiving general anesthesia. We demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. Finally, we demonstrate that the state of general anesthesia can be controlled using closed loop feedback control systems. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling.

anesthetics coverage

5 items

Seminar5
Domain spotlight

Explore how anesthetics research is advancing inside Neuro.

Visit domain