Latest

SeminarNeuroscience

Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain

Longzhi Tan
Stanford
Mar 30, 2022

Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.

SeminarNeuroscienceRecording

Collective Construction in Natural and Artificial Swarms

Justin Werfel
Harvard University
Oct 8, 2021

Natural systems provide both puzzles to unravel and demonstrations of what's possible. The natural world is full of complex systems of dynamically interchangeable, individually unreliable components that produce effective and reliable outcomes at the group level. A complementary goal to understanding the operation of such systems is that of being able to engineer artifacts that work in a similar way. One notable type of collective behavior is collective construction, epitomized by mound-building termites, which build towering, intricate mounds through the joint activity of millions of independent and limited insects. The artificial counterpart would be swarms of robots designed to build human-relevant structures. I will discuss work on both aspects of the problem, including studies of cues that individual termite workers use to help direct their actions and coordinate colony activity, and development of robot systems that build user-specified structures despite limited information and unpredictable variability in the process. These examples illustrate principles used by the insects and show how they can be applied in systems we create.

SeminarNeuroscience

A machine learning way to analyse white matter tractography streamlines / Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI

Dr Shenjun Zhong and Dr Kamlesh Pawar
Monash Biomedical Imaging
Mar 11, 2021

1. Embedding is all you need: A machine learning way to analyse white matter tractography streamlines - Dr Shenjun Zhong, Monash Biomedical Imaging Embedding white matter streamlines with various lengths into fixed-length latent vectors enables users to analyse them with general data mining techniques. However, finding a good embedding schema is still a challenging task as the existing methods based on spatial coordinates rely on manually engineered features, and/or labelled dataset. In this webinar, Dr Shenjun Zhong will discuss his novel deep learning model that identifies latent space and solves the problem of streamline clustering without needing labelled data. Dr Zhong is a Research Fellow and Informatics Officer at Monash Biomedical Imaging. His research interests are sequence modelling, reinforcement learning and federated learning in the general medical imaging domain. 2. Application of artificial intelligence in correcting motion artifacts and reducing scan time in MRI - Dr Kamlesh Pawar, Monash Biomedical imaging Magnetic Resonance Imaging (MRI) is a widely used imaging modality in clinics and research. Although MRI is useful it comes with an overhead of longer scan time compared to other medical imaging modalities. The longer scan times also make patients uncomfortable and even subtle movements during the scan may result in severe motion artifact in the images. In this seminar, Dr Kamlesh Pawar will discuss how artificial intelligence techniques can reduce scan time and correct motion artifacts. Dr Pawar is a Research Fellow at Monash Biomedical Imaging. His research interest includes deep learning, MR physics, MR image reconstruction and computer vision.

SeminarNeuroscienceRecording

Panorama de tecnologías abiertas para ciencia y educación en América Latina

Julieta Arancio
Centro de Investigaciones para la Transformación (CENIT-UNSAM), AR
Aug 21, 2020

Open science hardware (OSH) as a concept usually refers to artifacts, but also to a practice, a discipline and a collective of people pushing for open access to the design of science tools. Since 2016, the Global Open Science Hardware (GOSH) movement gathers actors from academia, education, the private sector and civic organisations to advocate for OSH to be ubiquitous by 2025. In Latin America, GOSH advocates have fundraised and gathered around the development of annual "residencies" for building hardware for science and education. The community is currently defining its regional strategy and identifying other regional actors working on science and technology democratization. In this presentation I will give an overview of the open hardware movement for science, with a focus on the activities and strategy of the Latin American chapter and concrete ways to engage.

ePosterNeuroscience

A latent model of calcium activity outperforms alternatives at removing behavioral artifacts in two-channel calcium imaging

Matthew Creamer,Kevin Chen,Andrew M Leifer,Jonathan Pillow

COSYNE 2022

ePosterNeuroscience

A latent model of calcium activity outperforms alternatives at removing behavioral artifacts in two-channel calcium imaging

Matthew Creamer,Kevin Chen,Andrew M Leifer,Jonathan Pillow

COSYNE 2022

artifacts coverage

9 items

Seminar7
ePoster2
Domain spotlight

Explore how artifacts research is advancing inside Neuro.

Visit domain