TopicNeuro

asynchronous states

1 Seminar1 ePoster

Latest

SeminarNeuroscience

Multiscale modeling of brain states, from spiking networks to the whole brain

Alain Destexhe
Centre National de la Recherche Scientifique and Paris-Saclay University
Apr 6, 2022

Modeling brain mechanisms is often confined to a given scale, such as single-cell models, network models or whole-brain models, and it is often difficult to relate these models. Here, we show an approach to build models across scales, starting from the level of circuits to the whole brain. The key is the design of accurate population models derived from biophysical models of networks of excitatory and inhibitory neurons, using mean-field techniques. Such population models can be later integrated as units in large-scale networks defining entire brain areas or the whole brain. We illustrate this approach by the simulation of asynchronous and slow-wave states, from circuits to the whole brain. At the mesoscale (millimeters), these models account for travelling activity waves in cortex, and at the macroscale (centimeters), the models reproduce the synchrony of slow waves and their responsiveness to external stimuli. This approach can also be used to evaluate the impact of sub-cellular parameters, such as receptor types or membrane conductances, on the emergent behavior at the whole-brain level. This is illustrated with simulations of the effect of anesthetics. The program codes are open source and run in open-access platforms (such as EBRAINS).

ePosterNeuroscience

Cholinergic heterogeneity in synchronous and asynchronous states in a whole brain model

Leonardo Dalla Porta, Jan Fousek, Alain Destexhe, Maria V. Sanchez-Vives

FENS Forum 2024

asynchronous states coverage

2 items

Seminar1
ePoster1
Domain spotlight

Explore how asynchronous states research is advancing inside Neuro.

Visit domain