attentional processes
Latest
Will it keep me awake? Common caffeine intake habits and sleep in real life situations
Daily caffeine consumption and chronic sleep restriction are highly prevalent in society. It is well established that acute caffeine intake under controlled conditions enhances vigilance and promotes wakefulness but can also delay sleep initiation and reduce electroencephalographic (EEG) markers of sleep intensity, particularly in susceptible individuals. To investigate whether these effects are also present during chronic consumption of coffee/caffeine, we recently conducted several complementary studies. We examined whether repeated coffee intake in dose and timing mimicking ‘real world’ habits maintains simple and complex attentional processes during chronic sleep restriction, such as during a busy work week. We found in genetically caffeine-sensitive individuals that regular coffee (300 mg caffeine/day) benefits most attentional tasks for 3-4 days when compared to decaffeinated coffee. Genetic variants were also used in the population-based HypnoLaus cohort, to investigate whether habitual caffeine consumption causally affects time to fall asleep, number of awakenings during sleep, and EEG-derived sleep intensity. The multi-level statistical analyses consistently showed that sleep quality was virtually unaffected when >3 caffeine-containing beverages/day were compared to 0-3 beverages/day. This conclusion was further corroborated by quantifying the sleep EEG in the laboratory in habitual caffeine consumers. Compared to placebo, daily intake of 3 x 150 mg caffeine over 10 days did not strongly impair nocturnal sleep nor subjective sleep quality in good sleepers. Finally, we tested whether an engineered delayed, pulsatile-release caffeine formula can improve the quality of morning awakening in sleep-restricted volunteers. We found that 160 mg caffeine taken at bedtime ameliorated the quality of awakening, increased positive and reduced negative affect scores, and promoted sustained attention immediately upon scheduled wake-up. Such an approach could prevent over-night caffeine withdrawal and provide a proactive strategy to attenuate disabling sleep inertia. Taken together, the studies suggest that common coffee/caffeine intake habits can transiently attenuate detrimental consequences of reduced sleep virtually without disturbing subjective and objective markers of sleep quality. Nevertheless, coffee/caffeine consumption cannot compensate for chronic sleep restriction.
Attentional Foundations of Framing Effects
Framing effects in individual decision-making have puzzled economists for decades because they are hard, if at all, to explain with rational choice theories. Why should mere changes in the description of a choice problem affect decision-making? Here, we examine the hypothesis that changes in framing cause changes in the allocation of attention to the different options – measured via eye-tracking – and give rise to changes in decision-making. We document that the framing of a sure alternative as a gain – as opposed to a loss – in a risk-taking task increases the attentional advantage of the sure option and induces a higher choice frequency of that option – a finding that is predicted by the attentional drift-diffusion model (aDDM). The model also correctly predicts other key findings such as that the increased attentional advantage of the sure option in the gain frame should also lead quicker decisions in this frame. In addition, the data reveal that increasing risk aversion at higher stake sizes may also be driven by attentional processes because the sure option receives significantly more attention – regardless of frame – at higher stakes. We also corroborate the causal impact of framing-induced changes of attention on choice with an additional experiment that manipulates attention exogenously. Finally, to study the precise mechanisms underlying the framing effect we structurally estimate an aDDM that allows for frame and option-dependent parameters. The estimation results indicate that – in addition to the direct effects of framing-induced changes in attention on choice – the gain frame also causes (i) an increase in the attentional discount of the gamble and (ii) an increased concavity of utility. Our findings suggest that the traditional explanation of framing effects in risky choice in terms of a more concave value function in the gain domain is seriously incomplete and that attentional mechanisms as hypothesized in the aDDM play a key role.
attentional processes coverage
2 items