TopicNeuroscience

bayesian process

Latest

SeminarNeuroscienceRecording

Learning in pain: probabilistic inference and (mal)adaptive control

Flavia Mancini
Department of Engineering
Apr 20, 2021

Pain is a major clinical problem affecting 1 in 5 people in the world. There are unresolved questions that urgently require answers to treat pain effectively, a crucial one being how the feeling of pain arises from brain activity. Computational models of pain consider how the brain processes noxious information and allow mapping neural circuits and networks to cognition and behaviour. To date, they have generally have assumed two largely independent processes: perceptual and/or predictive inference, typically modelled as an approximate Bayesian process, and action control, typically modelled as a reinforcement learning process. However, inference and control are intertwined in complex ways, challenging the clarity of this distinction. I will discuss how they may comprise a parallel hierarchical architecture that combines pain inference, information-seeking, and adaptive value-based control. Finally, I will discuss whether and how these learning processes might contribute to chronic pain.

SeminarNeuroscience

Top-down Modulation in Human Visual Cortex

Mohamed Abdelhack
Washington University in St. Louis
Dec 17, 2020

Human vision flaunts a remarkable ability to recognize objects in the surrounding environment even in the absence of complete visual representation of these objects. This process is done almost intuitively and it was not until scientists had to tackle this problem in computer vision that they noticed its complexity. While current advances in artificial vision systems have made great strides exceeding human level in normal vision tasks, it has yet to achieve a similar robustness level. One cause of this robustness is the extensive connectivity that is not limited to a feedforward hierarchical pathway similar to the current state-of-the-art deep convolutional neural networks but also comprises recurrent and top-down connections. They allow the human brain to enhance the neural representations of degraded images in concordance with meaningful representations stored in memory. The mechanisms by which these different pathways interact are still not understood. In this seminar, studies concerning the effect of recurrent and top-down modulation on the neural representations resulting from viewing blurred images will be presented. Those studies attempted to uncover the role of recurrent and top-down connections in human vision. The results presented challenge the notion of predictive coding as a mechanism for top-down modulation of visual information during natural vision. They show that neural representation enhancement (sharpening) appears to be a more dominant process of different levels of visual hierarchy. They also show that inference in visual recognition is achieved through a Bayesian process between incoming visual information and priors from deeper processing regions in the brain.

bayesian process coverage

2 items

Seminar2

Share your knowledge

Know something about bayesian process? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how bayesian process research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.