behavioural strategies
Latest
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Mice alternate between discrete strategies during perceptual decision-making
Classical models of perceptual decision-making assume that animals use a single, consistent strategy to integrate sensory evidence and form decisions during an experiment. In this talk, I aim to convince you that this common view is incorrect. I will show results from applying a latent variable framework, the “GLM-HMM”, to hundreds of thousands of trials of mouse choice data. Our analysis reveals that mice don’t lapse. Instead, mice switch back and forth between engaged and disengaged behavior within a single session, and each mode of behavior lasts tens to hundreds of trials.
Orbitofrontal cortical contributions to behavioural strategies during tactile reversal learning
FENS Forum 2024
behavioural strategies coverage
3 items