TopicNeuroscience
Content Overview
7Total items
7Seminars

Latest

SeminarNeuroscience

Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury

Franco Pestilli
University of Texas, Austin, USA
May 13, 2025

Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..

SeminarNeuroscienceRecording

Characterizing the causal role of large-scale network interactions in supporting complex cognition

Michal Ramot
Weizmann Inst. of Science
May 7, 2024

Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.

SeminarNeuroscienceRecording

Estimating repetitive spatiotemporal patterns from resting-state brain activity data

Yusuke Takeda
Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Japan
Apr 28, 2023

Repetitive spatiotemporal patterns in resting-state brain activities have been widely observed in various species and regions, such as rat and cat visual cortices. Since they resemble the preceding brain activities during tasks, they are assumed to reflect past experiences embedded in neuronal circuits. Moreover, spatiotemporal patterns involving whole-brain activities may also reflect a process that integrates information distributed over the entire brain, such as motor and visual information. Therefore, revealing such patterns may elucidate how the information is integrated to generate consciousness. In this talk, I will introduce our proposed method to estimate repetitive spatiotemporal patterns from resting-state brain activity data and show the spatiotemporal patterns estimated from human resting-state magnetoencephalography (MEG) and electroencephalography (EEG) data. Our analyses suggest that the patterns involved whole-brain propagating activities that reflected a process to integrate the information distributed over frequencies and networks. I will also introduce our current attempt to reveal signal flows and their roles in the spatiotemporal patterns using a big dataset. - Takeda et al., Estimating repetitive spatiotemporal patterns from resting-state brain activity data. NeuroImage (2016); 133:251-65. - Takeda et al., Whole-brain propagating patterns in human resting-state brain activities. NeuroImage (2021); 245:118711.

SeminarNeuroscienceRecording

Can we have jam today and jam tomorrow ?Improving outcomes for older people living with mental illness using applied and translational research

Ben Underwood
Department of Psychiatry, University of Cambridge
Jan 17, 2023

This talk will examine how approaches such as ‘big data’ and new ways of delivering clinical trials can improve current services for older people with mental illness (jam today) and identify and deliver new treatments in the future (jam tomorrow).

SeminarNeuroscienceRecording

Artificial Intelligence and Racism – What are the implications for scientific research?

ALBA Network
Mar 7, 2022

As questions of race and justice have risen to the fore across the sciences, the ALBA Network has invited Dr Shakir Mohamed (Senior Research Scientist at DeepMind, UK) to provide a keynote speech on Artificial Intelligence and racism, and the implications for scientific research, that will be followed by a discussion chaired by Dr Konrad Kording (Department of Neuroscience at University of Pennsylvania, US - neuromatch co-founder)

SeminarNeuroscience

Biomedical Image and Genetic Data Analysis with machine learning; applications in neurology and oncology

Wiro Niessen
Erasmus MC
Nov 9, 2020

In this presentation I will show the opportunities and challenges of big data analytics with AI techniques in medical imaging, also in combination with genetic and clinical data. Both conventional machine learning techniques, such as radiomics for tumor characterization, and deep learning techniques for studying brain ageing and prognosis in dementia, will be addressed. Also the concept of deep imaging, a full integration of medical imaging and machine learning, will be discussed. Finally, I will address the challenges of how to successfully integrate these technologies in daily clinical workflow.

SeminarNeuroscienceRecording

Bridging computational neuroscience and genomics in the era of big data

Shreejoy Tripathy
University of Toronto
Sep 15, 2020

big data coverage

7 items

Seminar7

Share your knowledge

Know something about big data? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how big data research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.