BioMedical Engineering
Latest
Fabrice Wallois
The main objective of this project is to characterize the endogenous generators underlying the emergence of sensory capacities and to characterize their associated functional connectivity. This will be done retrospectively on our High Resolution EEG database in premature neonates from 24 weeks of gestational age, which is the largest database worldwide. We will also use the OPM pediatric MEG, which is being set up in Amiens. This study will allow us to characterize the establishment of sensory networks before the modulation of cortical activity by external sensory information. The PhD candidate will be concentrated on developing advance signal processing approached using the already available datasets on HR EEG and MEG, for characterization of spontaneous neural oscillations and analysis of functional connectivity.
INC Day 2022: Neuroethics
Organized by the INC in partnership with the BioMedical Engineering Paris international Master’s program and the NeuroParis Master’s programs and is supported by the Faculty of Sciences of Paris Cité University and the Graduate school Psychological science.
The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models
Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features. As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110
BioMedical Engineering coverage
3 items