Topic spotlight
TopicNeuro

CANs

Discover seminars, jobs, and research tagged with CANs across Neuro.
9 curated items9 Seminars
Updated about 2 years ago
9 items · CANs

Latest

9 results
SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 21, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscience

Brain chart for the human lifespan

Richard Bethlehem
Director of Neuroimaging, Autism Research Centre, University of Cambridge, United Kingdom
Jan 19, 2022

Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.

SeminarNeuroscience

Networking—the key to success… especially in the brain

Alexander Dunn
University of Cambridge, DAMTP
Nov 17, 2021

In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.

SeminarNeuroscience

The Impact of Racism-related Stress on Neurobiological Systems in Black Americans”

Negar Fani
Emory University
Apr 9, 2021

Black Americans experience diverse racism-related stressors throughout the lifespan. Disproportionately high trauma exposure, economic disadvantage, explicit racism and inequitable treatment are stressors faced by many Black Americans. These experiences have a cumulative negative impact on psychological and physical health. However, little is understood about how experiences of racism, such as discrimination, can mediate health outcomes via their effects on neurobiology. I will present clinical, behavioral, physiological and neurobiological data from Black American participants in the Grady Trauma Project, a longstanding study of trauma conducted in inner-city Atlanta. These data will be discussed in the context of both risk and resilience/adaptation perspectives. Finally, recommendations for future clinical neuroscience research and targets for intervention in marginalized populations will be discussed.

SeminarNeuroscienceRecording

Kamala Harris and the Construction of Complex Ethnolinguistic Political Identity

Nicole Holliday
University of Pennsylvania
Feb 26, 2021

Over the past 50 years, sociolinguistic studies on black Americans have expanded in both theoretical and technical scope, and newer research has moved beyond seeing speakers, especially black speakers, as a monolithic sociolinguistic community (Wolfram 2007, Blake 2014). Yet there remains a dearth of critical work on complex identities existing within black American communities as well as how these identities are reflected and perceived in linguistic practice. At the same time, linguists have begun to take greater interest in the ways in which public figures, such as politicians, may illuminate the wider social meaning of specific linguistic variables. In this talk, I will present results from analyses of multiple aspects of ethnolinguistic variation in the speech of Vice President Kamala Harris during the 2019-2020 Democratic Party Primary debates. Together, these results show how VP Harris expertly employs both enregistered and subtle linguistic variables, including aspects of African American Language morphosyntax, vowels, and intonational phonology in the construction and performance of a highly specific sociolinguistic identity that reflects her unique positions politically, socially, and racially. The results of this study expand our knowledge about how the complexities of speaker identity are reflected in sociolinguistic variation, as well as press on the boundaries of what we know about how speakers in the public sphere use variation to reflect both who they are and who we want them to be.

SeminarNeuroscience

What is serially-dependent perception good for?

Mauro Manassi
University of Aberdeen, UK
Jan 14, 2021

Perception can be strongly serially-dependent (i.e. biased toward previously seen stimuli). Recently, serial dependencies in perception were proposed as a mechanism for perceptual stability, increasing the apparent continuity of the complex environments we experience in everyday life. For example, stable scene perception can be actively achieved by the visual system through global serial dependencies, a special kind of serial dependence between summary statistical representations. Serial dependence occurs also between emotional expressions, but it is highly selective for the same identity. Overall, these results further support the notion of serial dependence as a global, highly specialized, and purposeful mechanism. However, serial dependence could also be a deleterious phenomenon in unnatural or unpredictable situations, such as visual search in radiological scans, biasing current judgments toward previous ones even when accurate and unbiased perception is needed. For example, observers make consistent perceptual errors when classifying a tumor- like shape on the current trial, seeing it as more similar to the shape presented on the previous trial. In a separate localization test, observers make consistent errors when reporting the perceived position of an objects on the current trial, mislocalizing it toward the position in the preceding trial. Taken together, these results show two opposite sides of serial dependence; it can be a beneficial mechanism which promotes perceptual stability, but at the same time a deleterious mechanism which impairs our percept when fine recognition is needed.

SeminarNeuroscienceRecording

Linking neural representations of space by multiple attractor networks in the entorhinal cortex and the hippocampus

Yoram Burak
Hebrew University
Dec 9, 2020

In the past decade evidence has accumulated in favor of the hypothesis that multiple sub-networks in the medial entorhinal cortex (MEC) are characterized by low-dimensional, continuous attractor dynamics. Much has been learned about the joint activity of grid cells within a module (a module consists of grid cells that share a common grid spacing), but little is known about the interactions between them. Under typical conditions of spatial exploration in which sensory cues are abundant, all grid-cells in the MEC represent the animal’s position in space and their joint activity lies on a two-dimensional manifold. However, if the grid cells in a single module mechanistically constitute independent attractor networks, then under conditions in which salient sensory cues are absent, errors could accumulate in the different modules in an uncoordinated manner. Such uncoordinated errors would give rise to catastrophic readout errors when attempting to decode position from the joint grid-cell activity. I will discuss recent theoretical works from our group, in which we explored different mechanisms that could impose coordination in the different modules. One of these mechanisms involves coordination with the hippocampus and must be set up such that it operates across multiple spatial maps that represent different environments. The other mechanism is internal to the entorhinal cortex and independent of the hippocampus.

SeminarNeuroscience

Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior

Rochellys Diaz-Heijtz
Karolinska Instiute, Stockholm, Sweden
Nov 5, 2020
SeminarNeuroscience

Epigenetics and Dementia: Lessons From the 20-Year Indianapolis-Ibadan Dementia Study

Adesola Ogunniyi
University of Ibadan
Sep 29, 2020

Dementia is of global interest because of the rapid increase in both the number of individuals affected and the population at risk. It is essential that the risk factors be carefully delineated for the formulation of preventive strategies. Epigenetics refers to external modifications that turn genes "on" or "off”, and cross-cultural studies of migrant populations provide information on the interplay of environmental factors on genetic predisposition. The Indianapolis-Ibadan Dementia Study compared the prevalence, incidence and risk factors of dementia in African Americans and Yoruba to tease out the role of epigenetics in dementia. The presentation will provide details on biomarkers of dementia, vascular risk factors and the association with apolipoprotein E in the Yoruba. The purpose will be to inspire early career researchers on possibilities and research strategies applicable in African populations

CANs coverage

9 items

Seminar9
Domain spotlight

Explore how CANs research is advancing inside Neuro.

Visit domain