TopicNeuroscience

chronic epilepsy

Content Overview
3Total items
2Seminars
1ePoster

Latest

SeminarNeuroscienceRecording

Redox and mitochondrial dysregulation in epilepsy

Manisha Patel
University of Colorado
Sep 21, 2022

Epileptic seizures render the brain uniquely dependent on energy producing pathways. Studies in our laboratory have been focused on the role of redox processes and mitochondria in the context of abnormal neuronal excitability associated with epilepsy. We have shown that that status epilepticus (SE) alters mitochondrial and cellular redox status, energetics and function and conversely, that reactive oxygen species and resultant dysfunction can lead to chronic epilepsy. Oxidative stress and neuroinflammatory pathways have considerable crosstalk and targeting redox processes has recently been shown to control neuroinflammation and excitability. Understanding the role of metabolic and redox processes can enable the development of novel therapeutics to control epilepsy and/or its comorbidities.

SeminarNeuroscience

Ex vivo gene therapy for epilepsy. Seizure-suppressant and neuroprotective effects of encapsulated GDNF-producing cells

Michele Simonato
Università Vita-Salute San Raffaele
Nov 4, 2020

A variety of pharmacological treatments exist for patients suffering from focal seizures, but systemically administered drugs offer only symptomatic relief and frequently cause unwanted side effects. Moreover, available drugs are ineffective in one third of the patients. Thus, developing more targeted and effective treatment strategies is highly warranted. Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the brain. We have developed an implantable cell encapsulation system that delivers high and consistent levels of neurotrophic molecules directly to a specific brain region. The potential of this approach has been tested by delivering glial cell line-derived neurotrophic factor (GDNF) to the hippocampus of epileptic rats. In vivo studies demonstrated that these intrahippocampal implants continue to secrete GDNF and produce high hippocampal GDNF tissue levels in a long-lasting manner. Identical implants rapidly and greatly reduced seizure frequency in the pilocarpine model. This effect increased in magnitude over 3 months, ultimately leading to a reduction of spontaneous seizures by more than 90%. Importantly, these effects were accompanied by improvements in cognition and anxiety, and by the normalization of many histological alterations that are associated with chronic epilepsy. In addition, the antiseizure effect persisted even after device removal. Finally, by establishing a unilateral epileptic focus using the intrahippocampal kainate model, we found that delivery of GDNF exclusively within the focus suppressed already established spontaneous recurrent seizures. Together, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner. These findings may form the basis for clinical translation of this approach.

ePosterNeuroscience

Reorganization of forebrain populations in a model of chronic epilepsy induced by status epilepticus

Joana I. Soares, Catarina Da Costa, Ítalo Rosal Lustosa, Nikolay V. Lukoyanov

chronic epilepsy coverage

3 items

Seminar2
ePoster1

Share your knowledge

Know something about chronic epilepsy? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how chronic epilepsy research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.