collective behaviour
Latest
Reverse engineering Hydra
Hydra is an extraordinary creature. Continuously replacing itself, it can live indefinitely, performing a stable repertoire of reasonably sophisticated behaviors. This remarkable stability under plasticity may be due to the uniform nature of its nervous system, which consists of two apparently noncommunicating nerve net layers. We use modeling to understand the role of active muscles and biomechanics interact with neural activity to shape Hydra behaviour. We will discuss our findings and thoughts on how this simple nervous system may self-organize to produce purposeful behavior.
Physical Computation in Insect Swarms
Our world is full of living creatures that must share information to survive and reproduce. As humans, we easily forget how hard it is to communicate within natural environments. So how do organisms solve this challenge, using only natural resources? Ideas from computer science, physics and mathematics, such as energetic cost, compression, and detectability, define universal criteria that almost all communication systems must meet. We use insect swarms as a model system for identifying how organisms harness the dynamics of communication signals, perform spatiotemporal integration of these signals, and propagate those signals to neighboring organisms. In this talk I will focus on two types of communication in insect swarms: visual communication, in which fireflies communicate over long distances using light signals, and chemical communication, in which bees serve as signal amplifiers to propagate pheromone-based information about the queen’s location.
Collective Construction in Natural and Artificial Swarms
Natural systems provide both puzzles to unravel and demonstrations of what's possible. The natural world is full of complex systems of dynamically interchangeable, individually unreliable components that produce effective and reliable outcomes at the group level. A complementary goal to understanding the operation of such systems is that of being able to engineer artifacts that work in a similar way. One notable type of collective behavior is collective construction, epitomized by mound-building termites, which build towering, intricate mounds through the joint activity of millions of independent and limited insects. The artificial counterpart would be swarms of robots designed to build human-relevant structures. I will discuss work on both aspects of the problem, including studies of cues that individual termite workers use to help direct their actions and coordinate colony activity, and development of robot systems that build user-specified structures despite limited information and unpredictable variability in the process. These examples illustrate principles used by the insects and show how they can be applied in systems we create.
Tuning dumb neurons to task processing - via homeostasis
Homeostatic plasticity plays a key role in stabilizing neural network activity. But what is its role in neural information processing? We showed analytically how homeostasis changes collective dynamics and consequently information flow - depending on the input to the network. We then studied how input and homeostasis on a recurrent network of LIF neurons impacts information flow and task performance. We showed how we can tune the working point of the network, and found that, contrary to previous assumptions, there is not one optimal working point for a family of tasks, but each task may require its own working point.
Swarms for people
As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.
The Geometry of Decision-Making
Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges, to choosing with whom to associate. Here, using an integrated theoretical and experimental approach (employing immersive Virtual Reality), with both invertebrate and vertebrate models—the fruit fly, desert locust and zebrafish—we consider the recursive interplay between movement and collective vectorial integration in the brain during decision-making regarding options (potential ‘targets’) in space. We reveal that the brain repeatedly breaks multi-choice decisions into a series of abrupt (critical) binary decisions in space-time where organisms switch, spontaneously, from averaging vectorial information among, to suddenly excluding one of, the remaining options. This bifurcation process repeats until only one option—the one ultimately selected—remains. Close to each bifurcation the ‘susceptibility’ of the system exhibits a sharp increase, inevitably causing small differences among the remaining options to become amplified; a property that both comes ‘for free’ and is highly desirable for decision-making. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
Three levels of variability in the collective behavior of locusts
Many aspects of collective behavior depend on interactions between conspecifics. This is especially true for the collective motion of locusts, which swarm in millions while maintaining synchrony among individuals. However, whether locusts share and maintain the same socio-behavioral patterns – between groups, individuals and situations – remains an open question. Studying marching locusts under lab conditions, we found that (1) different groups behave differently; (2) locusts within a group homogenize their behavior; and (3) individuals have different socio-behavioral tendencies and context-dependent states. These variability levels suggest that behavioral differences within and among individuals exist, affect others, and shape the collective behavior of the entire group.
The collective behavior of the clonal raider ant: computations, patterns, and naturalistic behavior
Colonies of ants and other eusocial insects are superorganisms, which perform sophisticated cognitive-like functions at the level of the group. In my talk I will review our efforts to establish the clonal raider ant Ooceraea biroi as a lab model system for the systematic study of the principles underlying collective information processing in ant colonies. I will use results from two separate projects to demonstrate the potential of this model system: In the first, we analyze the foraging behavior of the species, known as group raiding: a swift offensive response of a colony to the detection of a potential prey by a scout. By using automated behavioral tracking and detailed analysis we show that this behavior is closely related to the army ant mass raid, an iconic collective behavior in which hundreds of thousands of ants spontaneously leave the nest to go hunting, and that the evolutionary transition between the two can be explained by a change in colony size alone. In the second project, we study the emergence of a collective sensory response threshold in a colony. The sensory threshold is a fundamental computational primitive, observed across many biological systems. By carefully controlling the sensory environment and the social structure of the colonies we were able to show that it also appear in a collective context, and that it emerges out of a balance between excitatory and inhibitory interactions between ants. Furthermore, by using a mathematical model we predict that these two interactions can be mapped into known mechanisms of communication in ants. Finally, I will discuss the opportunities for understanding collective behavior that are opening up by the development of methods for neuroimaging and neurocontrol of our ants.
Collective Ecophysiology and Physics of Social Insects
Collective behavior of organisms creates environmental micro-niches that buffer them from environmental fluctuations e.g., temperature, humidity, mechanical perturbations, etc., thus coupling organismal physiology, environmental physics, and population ecology. This talk will focus on a combination of biological experiments, theory, and computation to understand how a collective of bees can integrate physical and behavioral cues to attain a non-equilibrium steady state that allows them to resist and respond to environmental fluctuations of forces and flows. We analyze how bee clusters change their shape and connectivity and gain stability by spread-eagling themselves in response to mechanical perturbations. Similarly, we study how bees in a colony respond to environmental thermal perturbations by deploying a fanning strategy at the entrance that they use to create a forced ventilation stream that allows the bees to collectively maintain a constant hive temperature. When combined with quantitative analysis and computations in both systems, we integrate the sensing of the environmental cues (acceleration, temperature, flow) and convert them to behavioral outputs that allow the swarms to achieve a dynamic homeostasis.
The ecology of collective behaviour
Collective behaviour operates without central control, through interactions among individuals. The collective behaviour of ant colonies is based on simple olfactory interactions. Ant species differ enormously in the algorithms that regulate collective behaviour, reflecting diversity in ecology. I will contrast two species in very different ecological situations. Harvester ant colonies in the desert, where water is scarce but conditions are stable, regulate foraging to conserve water. Response to positive feedback from olfactory interactions depends on the risk of water loss, mediated by dopamine neurophysiology. For arboreal turtle ants in the tropical forest, life is easy but unpredictable, and a highly modular system uses negative feedback to sustain activity. In all natural systems, from ant colonies to brains, collective behaviour evolves in relation with changing conditions. Similar dynamics in environmental conditions may lead to the evolution of similar processes to regulate collective behaviour.
collective behaviour coverage
10 items