← Back

Collective Dynamics

Topic spotlight
TopicNeuro

collective dynamics

Discover seminars, jobs, and research tagged with collective dynamics across Neuro.
7 curated items7 Seminars
Updated over 2 years ago
7 items · collective dynamics

Latest

7 results
SeminarNeuroscience

NeuroAI from model to understanding: revealing the emergence of computations from the collective dynamics of interacting neurons

Surya Ganguli
Stanford University
Sep 13, 2023
SeminarNeuroscience

The role of sub-population structure in computations through neural dynamics

Srdjan Ostojic
École normale supérieure
May 19, 2023

Neural computations are currently conceptualised using two separate approaches: sorting neurons into functional sub-populations or examining distributed collective dynamics. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from recurrent networks trained on neuroscience tasks, we show that the collective dynamics and sub-population structure play fundamentally complementary roles. Although various tasks can be implemented in networks with fully random population structure, we found that flexible input–output mappings instead require a non-random population structure that can be described in terms of multiple sub-populations. Our analyses revealed that such a sub-population organisation enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics.

SeminarNeuroscience

When and (maybe) why do high-dimensional neural networks produce low-dimensional dynamics?

Eric Shea-Brown
Department of Applied Mathematics, University of Washington
Nov 18, 2021

There is an avalanche of new data on activity in neural networks and the biological brain, revealing the collective dynamics of vast numbers of neurons. In principle, these collective dynamics can be of almost arbitrarily high dimension, with many independent degrees of freedom — and this may reflect powerful capacities for general computing or information. In practice, neural datasets reveal a range of outcomes, including collective dynamics of much lower dimension — and this may reflect other desiderata for neural codes. For what networks does each case occur? We begin by exploring bottom-up mechanistic ideas that link tractable statistical properties of network connectivity with the dimension of the activity that they produce. We then cover “top-down” ideas that describe how features of connectivity and dynamics that impact dimension arise as networks learn to perform fundamental computational tasks.

SeminarNeuroscienceRecording

Tuning dumb neurons to task processing - via homeostasis

Viola Priesemann
Max Planck Institute for Dynamics and Self-organization
Oct 8, 2021

Homeostatic plasticity plays a key role in stabilizing neural network activity. But what is its role in neural information processing? We showed analytically how homeostasis changes collective dynamics and consequently information flow - depending on the input to the network. We then studied how input and homeostasis on a recurrent network of LIF neurons impacts information flow and task performance. We showed how we can tune the working point of the network, and found that, contrary to previous assumptions, there is not one optimal working point for a family of tasks, but each task may require its own working point.

SeminarNeuroscience

Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Neural Dynamics & Computation Lab, Stanford University
Jun 17, 2021

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

SeminarNeuroscienceRecording

Theoretical and computational approaches to neuroscience with complex models in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Stanford University
Oct 16, 2020

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition.  However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling.  We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process.  In particular we will discuss: how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; algorithmic approaches for simplifying deep network models of perception; optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

collective dynamics coverage

7 items

Seminar7
Domain spotlight

Explore how collective dynamics research is advancing inside Neuro.

Visit domain