Collective Dynamics
collective dynamics
Latest
NeuroAI from model to understanding: revealing the emergence of computations from the collective dynamics of interacting neurons
The role of sub-population structure in computations through neural dynamics
Neural computations are currently conceptualised using two separate approaches: sorting neurons into functional sub-populations or examining distributed collective dynamics. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from recurrent networks trained on neuroscience tasks, we show that the collective dynamics and sub-population structure play fundamentally complementary roles. Although various tasks can be implemented in networks with fully random population structure, we found that flexible input–output mappings instead require a non-random population structure that can be described in terms of multiple sub-populations. Our analyses revealed that such a sub-population organisation enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics.
The role of population structure in computations through neural dynamics
Neural computations are currently investigated using two separate approaches: sorting neurons into functional subpopulations or examining the low-dimensional dynamics of collective activity. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from networks trained on neuroscience tasks, here we show that the dimensionality of the dynamics and subpopulation structure play fundamentally com- plementary roles. Although various tasks can be implemented by increasing the dimensionality in networks with fully random population structure, flexible input–output mappings instead require a non-random population structure that can be described in terms of multiple subpopulations. Our analyses revealed that such a subpopulation structure enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics. Our results lead to task-specific predictions for the structure of neural selectivity, for inactivation experiments and for the implication of different neurons in multi-tasking.
When and (maybe) why do high-dimensional neural networks produce low-dimensional dynamics?
There is an avalanche of new data on activity in neural networks and the biological brain, revealing the collective dynamics of vast numbers of neurons. In principle, these collective dynamics can be of almost arbitrarily high dimension, with many independent degrees of freedom — and this may reflect powerful capacities for general computing or information. In practice, neural datasets reveal a range of outcomes, including collective dynamics of much lower dimension — and this may reflect other desiderata for neural codes. For what networks does each case occur? We begin by exploring bottom-up mechanistic ideas that link tractable statistical properties of network connectivity with the dimension of the activity that they produce. We then cover “top-down” ideas that describe how features of connectivity and dynamics that impact dimension arise as networks learn to perform fundamental computational tasks.
Tuning dumb neurons to task processing - via homeostasis
Homeostatic plasticity plays a key role in stabilizing neural network activity. But what is its role in neural information processing? We showed analytically how homeostasis changes collective dynamics and consequently information flow - depending on the input to the network. We then studied how input and homeostasis on a recurrent network of LIF neurons impacts information flow and task performance. We showed how we can tune the working point of the network, and found that, contrary to previous assumptions, there is not one optimal working point for a family of tasks, but each task may require its own working point.
Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning
Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.
Theoretical and computational approaches to neuroscience with complex models in high dimensions across multiple timescales: from perception to motor control and learning
Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; algorithmic approaches for simplifying deep network models of perception; optimality approaches to explain cell-type diversity in the first steps of vision in the retina.
collective dynamics coverage
7 items