Computational Models
computational models
Latest
N/A
The Grossman Center for Quantitative Biology and Human Behavior at the University of Chicago seeks outstanding applicants for multiple postdoctoral positions in computational and theoretical neuroscience. We especially welcome applicants who develop mathematical approaches, computational models, and machine learning methods to study the brain at the circuits, systems, or cognitive levels. The current faculty members of the Grossman Center to work with are: Brent Doiron’s lab investigates how the cellular and synaptic circuitry of neuronal circuits supports the complex dynamics and computations that are routinely observed in the brain. Jorge Jaramillo’s lab investigates how subcortical structures interact with cortical circuits to subserve cognitive processes such as memory, attention, and decision making. Ramon Nogueira’s lab investigates the geometry of representations as the computational support of cognitive processes like abstraction in noisy artificial and biological neural networks. Marcella Noorman’s lab investigates how properties of synapses, neurons, and circuits shape the neural dynamics that enable flexible and efficient computation. Samuel Muscinelli’s lab studies how the anatomy of brain circuits both governs learning and adapts to it. We combine analytical theory, machine learning, and data analysis, in close collaboration with experimentalists. Appointees will have access to state-of-the-art facilities and multiple opportunities for collaboration with exceptional experimental labs within the Neuroscience Institute, as well as other labs from the departments of Physics, Computer Sciences, and Statistics. The Grossman Center offers competitive postdoctoral salaries in the vibrant and international city of Chicago, and a rich intellectual environment that includes the Argonne National Laboratory and UChicago’s Data Science Institute. The Neuroscience Institute is currently engaged in a major expansion that includes the incorporation of several new faculty members in the next few years.
Decision and Behavior
This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”
Contribution of computational models of reinforcement learning to neurosciences/ computational modeling, reward, learning, decision-making, conditioning, navigation, dopamine, basal ganglia, prefrontal cortex, hippocampus
Connectome-based models of neurodegenerative disease
Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.
Modeling the Navigational Circuitry of the Fly
Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.
Computational models of spinal locomotor circuitry
To effectively move in complex and changing environments, animals must control locomotor speed and gait, while precisely coordinating and adapting limb movements to the terrain. The underlying neuronal control is facilitated by circuits in the spinal cord, which integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. I will present a series of computational models investigating dynamics of central neuronal interactions as well as a neuromechanical model that integrates neuronal circuits with a model of the musculoskeletal system. These models closely reproduce speed-dependent gait expression and experimentally observed changes following manipulation of multiple classes of genetically-identified neuronal populations. I will discuss the utility of these models in providing experimentally testable predictions for future studies.
Decision Making and the Brain
In this talk, we will examine human behavior from the perspective of the choices we make every day. We will study the role of the brain in enabling these decisions and discuss some simple computational models of decision making and the neural basis. Towards the end, we will have a short, interactive session to engage in some easy decisions that will help us discover our own biases.
Neural circuits of visuospatial working memory
One elementary brain function that underlies many of our cognitive behaviors is the ability to maintain parametric information briefly in mind, in the time scale of seconds, to span delays between sensory information and actions. This component of working memory is fragile and quickly degrades with delay length. Under the assumption that behavioral delay-dependencies mark core functions of the working memory system, our goal is to find a neural circuit model that represents their neural mechanisms and apply it to research on working memory deficits in neuropsychiatric disorders. We have constrained computational models of spatial working memory with delay-dependent behavioral effects and with neural recordings in the prefrontal cortex during visuospatial working memory. I will show that a simple bump attractor model with weak inhomogeneities and short-term plasticity mechanisms can link neural data with fine-grained behavioral output in a trial-by-trial basis and account for the main delay-dependent limitations of working memory: precision, cardinal repulsion biases and serial dependence. I will finally present data from participants with neuropsychiatric disorders that suggest that serial dependence in working memory is specifically altered, and I will use the model to infer the possible neural mechanisms affected.
Metabolic spikes: from rogue electrons to Parkinson's
Conventionally, neurons are thought to be cellular units that process synaptic inputs into synaptic spikes. However, it is well known that neurons can also spike spontaneously and display a rich repertoire of firing properties with no apparent functional relevance e.g. in in vitro cortical slice preparations. In this talk, I will propose a hypothesis according to which intrinsic excitability in neurons may be a survival mechanism to minimize toxic byproducts of the cell’s energy metabolism. In neurons, this toxicity can arise when mitochondrial ATP production stalls due to limited ADP. Under these conditions, electrons deviate from the electron transport chain to produce reactive oxygen species, disrupting many cellular processes and challenging cell survival. To mitigate this, neurons may engage in ADP-producing metabolic spikes. I will explore the validity of this hypothesis using computational models that illustrate the implications of synaptic and metabolic spiking, especially in the context of substantia nigra pars compacta dopaminergic neurons and their degeneration in Parkinson's disease.
NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons
In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.
Why would we need Cognitive Science to develop better Collaborative Robots and AI Systems?
While classical industrial robots are mostly designed for repetitive tasks, assistive robots will be challenged by a variety of different tasks in close contact with humans. Hereby, learning through the direct interaction with humans provides a potentially powerful tool for an assistive robot to acquire new skills and to incorporate prior human knowledge during the exploration of novel tasks. Moreover, an intuitive interactive teaching process may allow non-programming experts to contribute to robotic skill learning and may help to increase acceptance of robotic systems in shared workspaces and everyday life. In this talk, I will discuss recent research I did on interactive robot skill learning and the remaining challenges on the route to human-centered teaching of assistive robots. In particular, I will also discuss potential connections and overlap with cognitive science. The presented work covers learning a library of probabilistic movement primitives from human demonstrations, intention aware adaptation of learned skills in shared workspaces, and multi-channel interactive reinforcement learning for sequential tasks.
Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli
Vision begins in the eye, and what the “retina tells the brain” is a major interest in visual neuroscience. To deduce what the retina encodes (“tells”), computational models are essential. The most important models in the retina currently aim to understand the responses of the retinal output neurons – the ganglion cells. Typically, these models make simplifying assumptions about the neurons in the retinal network upstream of ganglion cells. One important assumption is linear spatial integration. In this talk, I first define what it means for a neuron to be spatially linear or nonlinear and how we can experimentally measure these phenomena. Next, I introduce the neurons upstream to retinal ganglion cells, with focus on bipolar cells, which are the connecting elements between the photoreceptors (input to the retinal network) and the ganglion cells (output). This pivotal position makes bipolar cells an interesting target to study the assumption of linear spatial integration, yet due to their location buried in the middle of the retina it is challenging to measure their neural activity. Here, I present bipolar cell data where I ask whether the spatial linearity holds under artificial and natural visual stimuli. Through diverse analyses and computational models, I show that bipolar cells are more complex than previously thought and that they can already act as nonlinear processing elements at the level of their somatic membrane potential. Furthermore, through pharmacology and current measurements, I illustrate that the observed spatial nonlinearity arises at the excitatory inputs to bipolar cells. In the final part of my talk, I address the functional relevance of the nonlinearities in bipolar cells through combined recordings of bipolar and ganglion cells and I show that the nonlinearities in bipolar cells provide high spatial sensitivity to downstream ganglion cells. Overall, I demonstrate that simple linear assumptions do not always apply and more complex models are needed to describe what the retina “tells” the brain.
Homeostatic structural plasticity of neuronal connectivity triggered by optogenetic stimulation
Ever since Bliss and Lømo discovered the phenomenon of long-term potentiation (LTP) in rabbit dentate gyrus in the 1960s, Hebb’s rule—neurons that fire together wire together—gained popularity to explain learning and memory. Accumulating evidence, however, suggests that neural activity is homeostatically regulated. Homeostatic mechanisms are mostly interpreted to stabilize network dynamics. However, recent theoretical work has shown that linking the activity of a neuron to its connectivity within the network provides a robust alternative implementation of Hebb’s rule, although entirely based on negative feedback. In this setting, both natural and artificial stimulation of neurons can robustly trigger network rewiring. We used computational models of plastic networks to simulate the complex temporal dynamics of network rewiring in response to external stimuli. In parallel, we performed optogenetic stimulation experiments in the mouse anterior cingulate cortex (ACC) and subsequently analyzed the temporal profile of morphological changes in the stimulated tissue. Our results suggest that the new theoretical framework combining neural activity homeostasis and structural plasticity provides a consistent explanation of our experimental observations.
Space and its computational challenges
How our senses work both separately and together involves rich computational problems. I will discuss the spatial and representational problems faced by the visual and auditory system, focusing on two issues. 1. How does the brain correct for discrepancies in the visual and auditory spatial reference frames? I will describe our recent discovery of a novel type of otoacoustic emission, the eye movement related eardrum oscillation, or EMREO (Gruters et al, PNAS 2018). 2. How does the brain encode more than one stimulus at a time? I will discuss evidence for neural time-division multiplexing, in which neural activity fluctuates across time to allow representations to encode more than one simultaneous stimulus (Caruso et al, Nat Comm 2018). These findings all emerged from experimentally testing computational models regarding spatial representations and their transformations within and across sensory pathways. Further, they speak to several general problems confronting modern neuroscience such as the hierarchical organization of brain pathways and limits on perceptual/cognitive processing.
Computational Models of Compulsivity
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.
An in-silico framework to study the cholinergic modulation of the neocortex
Neuromodulators control information processing in cortical microcircuits by regulating the cellular and synaptic physiology of neurons. Computational models and detailed simulations of neocortical microcircuitry offer a unifying framework to analyze the role of neuromodulators on network activity. In the present study, to get a deeper insight in the organization of the cortical neuropil for modeling purposes, we quantify the fiber length per cortical volume and the density of varicosities for catecholaminergic, serotonergic and cholinergic systems using immunocytochemical staining and stereological techniques. The data obtained are integrated into a biologically detailed digital reconstruction of the rodent neocortex (Markram et al, 2015) in order to model the influence of modulatory systems on the activity of the somatosensory cortex neocortical column. Simulations of ascending modulation of network activity in our model predict the effects of increasing levels of neuromodulators on diverse neuron types and synapses and reveal a spectrum of activity states. Low levels of neuromodulation drive microcircuit activity into slow oscillations and network synchrony, whereas high neuromodulator concentrations govern fast oscillations and network asynchrony. The models and simulations thus provide a unifying in silico framework to study the role of neuromodulators in reconfiguring network activity.
Towards a neurally mechanistic understanding of visual cognition
I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!
Computational psychophysics at the intersection of theory, data and models
Behavioural measurements are often overlooked by computational neuroscientists, who prefer to focus on electrophysiological recordings or neuroimaging data. This attitude is largely due to perceived lack of depth/richness in relation to behavioural datasets. I will show how contemporary psychophysics can deliver extremely rich and highly constraining datasets that naturally interface with computational modelling. More specifically, I will demonstrate how psychophysics can be used to guide/constrain/refine computational models, and how models can be exploited to design/motivate/interpret psychophysical experiments. Examples will span a wide range of topics (from feature detection to natural scene understanding) and methodologies (from cascade models to deep learning architectures).
SCN1A/Nav1.1 sodium channel: loss and gain of function in epilepsy and migraine
Genetic mutations of the SCN1A gene, the voltage gated sodium channel NaV1.1, cause well-defined epilepsies, including the severe developmental and epileptic encephalopathy Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+), as well as a severe form of migraine with aura, familial hemiplegic migraine (FHM). More recently, they have been identified in an extremely severe early infantile encephalopathy. Functional studies and animal models have contributed to disclose pathological mechanisms, which can be often linked to a straightforward loss- vs gain- of channel function. However, although this simple dichotomy is pertinent and useful, detailed pathological mechanisms in neuronal circuits can be more complex, sometimes because of unexpected homeostatic or pathologic responses. I will compare pathological mechanisms of epilepsy and migraine mutations studied with cellular, animal and computational models, highlighting a novel homeostatic response implemented by CCK-positive GABAergic neurons in a mouse model of Dravet syndrome, which may be boosted in therapeutic approaches.
Learning in pain: probabilistic inference and (mal)adaptive control
Pain is a major clinical problem affecting 1 in 5 people in the world. There are unresolved questions that urgently require answers to treat pain effectively, a crucial one being how the feeling of pain arises from brain activity. Computational models of pain consider how the brain processes noxious information and allow mapping neural circuits and networks to cognition and behaviour. To date, they have generally have assumed two largely independent processes: perceptual and/or predictive inference, typically modelled as an approximate Bayesian process, and action control, typically modelled as a reinforcement learning process. However, inference and control are intertwined in complex ways, challenging the clarity of this distinction. I will discuss how they may comprise a parallel hierarchical architecture that combines pain inference, information-seeking, and adaptive value-based control. Finally, I will discuss whether and how these learning processes might contribute to chronic pain.
Choosing, fast and slow: Implications of prioritized-sampling models for understanding automaticity and control
The idea that behavior results from a dynamic interplay between automatic and controlled processing underlies much of decision science, but has also generated considerable controversy. In this talk, I will highlight behavioral and neural data showing how recently-developed computational models of decision making can be used to shed new light on whether, when, and how decisions result from distinct processes operating at different timescales. Across diverse domains ranging from altruism to risky choice biases and self-regulation, our work suggests that a model of prioritized attentional sampling and evidence accumulation may provide an alternative explanation for many phenomena previously interpreted as supporting dual process models of choice. However, I also show how some features of the model might be taken as support for specific aspects of dual-process models, providing a way to reconcile conflicting accounts and generating new predictions and insights along the way.
Inferring brain-wide interactions using data-constrained recurrent neural network models
Behavior arises from the coordinated activity of numerous distinct brain regions. Modern experimental tools allow access to neural populations brain-wide, yet understanding such large-scale datasets necessitates scalable computational models to extract meaningful features of inter-region communication. In this talk, I will introduce Current-Based Decomposition (CURBD), an approach for inferring multi-region interactions using data-constrained recurrent neural network models. I will first show that CURBD accurately isolates inter-region currents in simulated networks with known dynamics. I will then apply CURBD to understand the brain-wide flow of information leading to behavioral state transitions in larval zebrafish. These examples will establish CURBD as a flexible, scalable framework to infer brain-wide interactions that are inaccessible from experimental measurements alone.
The When, Where and What of visual memory formation
The eyes send a continuous stream of about two million nerve fibers to the brain, but only a fraction of this information is stored as visual memories. This talk will detail three neurocomputational models that attempt an understanding how the visual system makes on-the-fly decisions about how to encode that information. First, the STST family of models (Bowman & Wyble 2007; Wyble, Potter, Bowman & Nieuwenstein 2011) proposes mechanisms for temporal segmentation of continuous input. The conclusion of this work is that the visual system has mechanisms for rapidly creating brief episodes of attention that highlight important moments in time, and also separates each episode from temporally adjacent neighbors to benefit learning. Next, the RAGNAROC model (Wyble et al. 2019) describes a decision process for determining the spatial focus (or foci) of attention in a spatiotopic field and the neural mechanisms that provide enhancement of targets and suppression of highly distracting information. This work highlights the importance of integrating behavioral and electrophysiological data to provide empirical constraints on a neurally plausible model of spatial attention. The model also highlights how a neural circuit can make decisions in a continuous space, rather than among discrete alternatives. Finally, the binding pool (Swan & Wyble 2014; Hedayati, O’Donnell, Wyble in Prep) provides a mechanism for selectively encoding specific attributes (i.e. color, shape, category) of a visual object to be stored in a consolidated memory representation. The binding pool is akin to a holographic memory system that layers representations of select latent representations corresponding to different attributes of a given object. Moreover, it can bind features into distinct objects by linking them to token placeholders. Future work looks toward combining these models into a coherent framework for understanding the full measure of on-the-fly attentional mechanisms and how they improve learning.
Global visual salience of competing stimuli
Current computational models of visual salience accurately predict the distribution of fixations on isolated visual stimuli. It is not known, however, whether the global salience of a stimulus, that is its effectiveness in the competition for attention with other stimuli, is a function of the local salience or an independent measure. Further, do task and familiarity with the competing images influence eye movements? In this talk, I will present the analysis of a computational model of the global salience of natural images. We trained a machine learning algorithm to learn the direction of the first saccade of participants who freely observed pairs of images. The pairs balanced the combinations of new and already seen images, as well as task and task-free trials. The coefficients of the model provided a reliable measure of the likelihood of each image to attract the first fixation when seen next to another image, that is their global salience. For example, images of close-up faces and images containing humans were consistently looked first and were assigned higher global salience. Interestingly, we found that global salience cannot be explained by the feature-driven local salience of images, the influence of task and familiarity was rather small and we reproduced the previously reported left-sided bias. This computational model of global salience allows to analyse multiple other aspects of human visual perception of competing stimuli. In the talk, I will also present our latest results from analysing the saccadic reaction time as a function of the global salience of the pair of images.
Time perception: how our judgment of time is influenced by the regularity and change in stimulus distribution?
To organize various experiences in a coherent mental representation, we need to properly estimate the duration and temporal order of different events. Yet, our perception of time is noisy and vulnerable to various illusions. Studying these illusions can elucidate the mechanism by which the brain perceives time. In this talk, I will review a few studies on how the brain perceives duration of events and the temporal order between self-generated motion and sensory feedback. Combined with computational models at different levels, these experiments illustrated that the brain incorporates the prior knowledge of the statistical distribution of the duration of stimuli and the decay of memory when estimating duration of an individual event, and adjusts its perception of temporal order to changes in the statistics of the environment.
Computational models of neural development
Unlike even the most sophisticated current forms of artificial intelligence, developing biological organisms must build their neural hardware from scratch. Furthermore they must start to evade predators and find food before this construction process is complete. I will discuss an interdisciplinary program of mathematical and experimental work which addresses some of the computational principles underlying neural development. This includes (i) how growing axons navigate to their targets by detecting and responding to molecular cues in their environment, (ii) the formation of maps in the visual cortex and how these are influenced by visual experience, and (iii) how patterns of neural activity in the zebrafish brain develop to facilitate precisely targeted hunting behaviour. Together this work contributes to our understanding of both normal neural development and the etiology of neurodevelopmental disorders.
Towards hybrid models of retinal circuits - integrating biophysical realism, anatomical constraints and predictive performance
Visual processing in the retina has been studied in great detail at all levels such that a comprehensive picture of the retina's cell types and the many neural circuits they form is emerging. However, the currently best performing models of retinal function are black-box CNN models which are agnostic to such biological knowledge. Here, I present two of our recent attempts to develop computational models of processing in the inner retina, which both respect biophysical and anatomical constraints yet provide accurate predictions of retinal activity
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
computational models coverage
29 items