connectomics
Latest
Justus Kebschull
We develop and apply cutting edge molecular and neuroanatomical tools to study how primordial circuits expanded in evolution to form the complex brains that exist today. We have a special focus on barcode sequencing-based high-throughput connectomics (BRICseq, MAPseq) and in situ sequencing, which we apply in the cerebellar nuclei and brain-wide in different vertebrates. Recent relevant papers include Kebschull et al. 2020 bioRxiv, Huang et al. 2020 Cell, Han et al. 2018 Nature, Kebschull et al. 2016 Neuron.
Memory Decoding Journal Club: Functional connectomics reveals general wiring rule in mouse visual cortex
Functional connectomics reveals general wiring rule in mouse visual cortex
Neural Signal Propagation Atlas of C. elegans
In the age of connectomics, it is increasingly important to understand how the nodes and edges of a brain's anatomical network, or "connectome," gives rise to neural signaling and neural function. I will present the first comprehensive brain-wide cell-resolved causal measurements of how neurons signal to one another in response to stimulation in the nematode C. elegans. I will compare this signal propagation atlas to the worm's known connectome to address fundamental questions of structure and function in the brain.
The Brain Prize winners' webinar
This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.
Brain network communication: concepts, models and applications
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Modern Approaches to Behavioural Analysis
The goal of neuroscience is to understand how the nervous system controls behaviour, not only in the simplified environments of the lab, but also in the natural environments for which nervous systems evolved. In pursuing this goal, neuroscience research is supported by an ever-larger toolbox, ranging from optogenetics to connectomics. However, often these tools are coupled with reductionist approaches for linking nervous systems and behaviour. This course will introduce advanced techniques for measuring and analysing behaviour, as well as three fundamental principles as necessary to understanding biological behaviour: (1) morphology and environment; (2) action-perception closed loops and purpose; and (3) individuality and historical contingencies [1]. [1] Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104(1), 25-36
Inhibitory connectivity and computations in olfaction
We use the olfactory system and forebrain of (adult) zebrafish as a model to analyze how relevant information is extracted from sensory inputs, how information is stored in memory circuits, and how sensory inputs inform behavior. A series of recent findings provides evidence that inhibition has not only homeostatic functions in neuronal circuits but makes highly specific, instructive contributions to behaviorally relevant computations in different brain regions. These observations imply that the connectivity among excitatory and inhibitory neurons exhibits essential higher-order structure that cannot be determined without dense network reconstructions. To analyze such connectivity we developed an approach referred to as “dynamical connectomics” that combines 2-photon calcium imaging of neuronal population activity with EM-based dense neuronal circuit reconstruction. In the olfactory bulb, this approach identified specific connectivity among co-tuned cohorts of excitatory and inhibitory neurons that can account for the decorrelation and normalization (“whitening”) of odor representations in this brain region. These results provide a mechanistic explanation for a fundamental neural computation that strictly requires specific network connectivity.
NMC4 Keynote: An all-natural deep recurrent neural network architecture for flexible navigation
A wide variety of animals and some artificial agents can adapt their behavior to changing cues, contexts, and goals. But what neural network architectures support such behavioral flexibility? Agents with loosely structured network architectures and random connections can be trained over millions of trials to display flexibility in specific tasks, but many animals must adapt and learn with much less experience just to survive. Further, it has been challenging to understand how the structure of trained deep neural networks relates to their functional properties, an important objective for neuroscience. In my talk, I will use a combination of behavioral, physiological and connectomic evidence from the fly to make the case that the built-in modularity and structure of its networks incorporate key aspects of the animal’s ecological niche, enabling rapid flexibility by constraining learning to operate on a restricted parameter set. It is not unlikely that this is also a feature of many biological neural networks across other animals, large and small, and with and without vertebrae.
Can connectomics help us understand the brain and sustain the revolution in AI?
3 short talks and a panel discussion on the topic of "Can connectomics help us understand the brain and sustain the revolution in AI?" Expect beautiful connectomics data, provocative dreaming, realistic critiques and everything in between. Students & post-docs, stay on to meet our 3 amazing speakers. Moderator: Dr Greg Jefferis https://www2.mrc-lmb.cam.ac.uk/group-leaders/h-to-m/gregory-jefferis/
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.
Multi-scale synaptic analysis for psychiatric/emotional disorders
Dysregulation of emotional processing and its integration with cognitive functions are central features of many mental/emotional disorders associated both with externalizing problems (aggressive, antisocial behaviors) and internalizing problems (anxiety, depression). As Dr. Joseph LeDoux, our invited speaker of this program, wrote in his famous book “Synaptic self: How Our Brains Become Who We Are”—the brain’s synapses—are the channels through which we think, act, imagine, feel, and remember. Synapses encode the essence of personality, enabling each of us to function as a distinctive, integrated individual from moment to moment. Thus, exploring the functioning of synapses leads to the understanding of the mechanism of (patho)physiological function of our brain. In this context, we have investigated the pathophysiology of psychiatric disorders, with particular emphasis on the synaptic function of model mice of various psychiatric disorders such as schizophrenia, autism, depression, and PTSD. Our current interest is how synaptic inputs are integrated to generate the action potential. Because the spatiotemporal organization of neuronal firing is crucial for information processing, but how thousands of inputs to the dendritic spines drive the firing remains a central question in neuroscience. We identified a distinct pattern of synaptic integration in the disease-related models, in which extra-large (XL) spines generate NMDA spikes within these spines, which was sufficient to drive neuronal firing. We experimentally and theoretically observed that XL spines negatively correlated with working memory. Our work offers a whole new concept for dendritic computation and network dynamics, and the understanding of psychiatric research will be greatly reconsidered. The second half of my talk is the development of a novel synaptic tool. Because, no matter how beautifully we can illuminate the spine morphology and how accurately we can quantify the synaptic integration, the links between synapse and brain function remain correlational. In order to challenge the causal relationship between synapse and brain function, we established AS-PaRac1, which is unique not only because it can specifically label and manipulate the recently potentiated dendritic spine (Hayashi-Takagi et al, 2015, Nature). With use of AS-PaRac1, we developed an activity-dependent simultaneous labeling of the presynaptic bouton and the potentiated spines to establish “functional connectomics” in a synaptic resolution. When we apply this new imaging method for PTSD model mice, we identified a completely new functional neural circuit of brain region A→B→C with a very strong S/N in the PTSD model mice. This novel tool of “functional connectomics” and its photo-manipulation could open up new areas of emotional/psychiatric research, and by extension, shed light on the neural networks that determine who we are.
Vision outside of the visual system (in Drosophila)
We seek to understand the control of behavior – by animals, their brains, and their neurons. Reiser and his team are focused on the fly visual system, using modern methods from the Drosophila toolkit to understand how visual pathways are involved in specific behaviors. Due to the recent connectomics explosion, they now study the brain-wide networks organizing visual information for behavior control. The team combines explorations of visually guided behaviors with functional investigations of specific cell types throughout the fly brain. The Reiser lab actively develops and disseminates new methods and instruments enabling increasingly precise quantification of animal behavior.
Fragility of the human connectome across the lifespan
The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.
A Changing View of Vision: From Molecules to Behavior in Zebrafish
All sensory perception and every coordinated movement, as well as feelings, memories and motivation, arise from the bustling activity of many millions of interconnected cells in the brain. The ultimate function of this elaborate network is to generate behavior. We use zebrafish as our experimental model, employing a diverse array of molecular, genetic, optical, connectomic, behavioral and computational approaches. The goal of our research is to understand how neuronal circuits integrate sensory inputs and internal state and convert this information into behavioral responses.
Associations between brain interoceptive network dysconnectivity and heightened peripheral inflammation in depression
Are the immune system, brain, mind and mood related? Could this explain why chronic low-grade peripheral inflammation is also noted in approximately 1/3 of those with major depressive disorder (MDD)? The field recognized today as immunopsychiatry was founded on scientific evidence that germinated over 30 years ago. Since, it has been understood that (i) there could be a causal link between inflammation and depression, (ii) select blood immune markers show robust potential as biomarkers for inflammation-linked depression, and more generally, (iii) Descartes' theories on mind-body dualism were biologically erroneous. Nonetheless, the mechanistic brain-immune axis in the trinity formulating inflammation-linked depression i.e. psycho-neuro-immunology, still remains unclear. This talk will discuss findings from our recent investigation endeavored to unpack this by linking functional connectivity abnormalities with peripheral immune markers.
A journey through connectomics: from manual tracing to the first fully automated basal ganglia connectomes
The "mind of the worm", the first electron microscopy-based connectome of C. elegans, was an early sign of where connectomics is headed, followed by a long time of little progress in a field held back by the immense manual effort required for data acquisition and analysis. This changed over the last few years with several technological breakthroughs, which allowed increases in data set sizes by several orders of magnitude. Brain tissue can now be imaged in 3D up to a millimeter in size at nanometer resolution, revealing tissue features from synapses to the mitochondria of all contained cells. These breakthroughs in acquisition technology were paralleled by a revolution in deep-learning segmentation techniques, that equally reduced manual analysis times by several orders of magnitude, to the point where fully automated reconstructions are becoming useful. Taken together, this gives neuroscientists now access to the first wiring diagrams of thousands of automatically reconstructed neurons connected by millions of synapses, just one line of program code away. In this talk, I will cover these developments by describing the past few years' technological breakthroughs and discuss remaining challenges. Finally, I will show the potential of automated connectomics for neuroscience by demonstrating how hypotheses in reinforcement learning can now be tackled through virtual experiments in synaptic wiring diagrams of the songbird basal ganglia.
Cones with character: An in vivo circuit implementation of efficient coding
In this talk I will summarize some of our recent unpublished work on spectral coding in the larval zebrafish retina. Combining 2p imaging, hyperspectral stimulation, computational modeling and connectomics, we take a renewed look at the spectral tuning of cone photoreceptors in the live eye. We find that already cones optimally rotate natural colour space in a PCA-like fashion to disambiguate greyscale from "colour" information. We then follow this signal through the retinal layers and ultimately into the brain to explore the major spectral computations performed by the visual system at its consecutive stages. We find that by and large, zebrafish colour vision can be broken into three major spectral zones: long wavelength grey-scale-like vision, short-wavelength prey capture circuits, and spectrally diverse mid-wavelength circuits which possibly support the bulk of "true colour vision" in this tetrachromate vertebrate.
Cerebral Cortex Connectomics
Densely mapping neuronal circuits at synaptic resolution is providing unprecedented insight into the formation and structure of the cerebral cortex. I’ll present recent advances and discuss what we can learn about precision, plasticity and possible patterns in mammalian neuronal circuits.
Motion vision in Drosophila: from single neuron computation to behaviour
How nervous systems control behaviour is the main question we seek to answer in neuroscience. Although visual systems have been a popular entry point into the brain, we don’t understand—in any deep sense—how visual perception guides navigation in flies (or any organism). I will present recent progress towards this goal from our lab. We are using anatomical insights from connectomics, genetic methods for labelling and manipulating identified cell types, neurophysiology, behaviour, and computational modeling to explain how the fly brain processes visual motion to regulate behaviour.
Multimodal Ising-based connectomics reveals an excitation-inhibition imbalance in Alzheimer's Risk
COSYNE 2025
Testing the power and limitations of predictive connectomics in the fly visual system
COSYNE 2025
Molecular connectomics reveals a glucagon-like peptide 1 sensitive neural circuit for satiety
FENS Forum 2024
A novel view on basal ganglia pathways: Insights from synaptic-resolution connectomics in songbirds
FENS Forum 2024
connectomics coverage
23 items