cortical network
Latest
Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism
Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
Characterizing the causal role of large-scale network interactions in supporting complex cognition
Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
The strongly recurrent regime of cortical networks
Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.
Age differences in cortical network flexibility and motor learning ability
Universal function approximation in balanced spiking networks through convex-concave boundary composition
The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.
Modularity and Robustness of Frontal Cortical Networks
Nuo Li (Baylor College of Medicine, USA) shares novel insights into coordinated interhemispheric large-scale neural network activity underpinning short-term memory in mice. Relevant techniques covered include: simultaneous multi-regional recordings using multiple 64-channel H probes during head-fixed behavior in mice. simultaneous optogenetics and population recording. analysis of population recordings to infer interactions between brain regions. Reference: Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 184(14):3717-3730.
Representing Social Calls within Cortical Networks in an Echolocating Bat
Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice
The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.
Response of cortical networks to optogenetic stimulation: Experiment vs. theory
Optogenetics is a powerful tool that allows experimentalists to perturb neural circuits. What can we learn about a network from observing its response to perturbations? I will first describe the results of optogenetic activation of inhibitory neurons in mice cortex, and show that the results are consistent with inhibition stabilization. I will then move to experiments in which excitatory neurons are activated optogenetically, with or without visual inputs, in mice and monkeys. In some conditions, these experiments show a surprising result that the distribution of firing rates is not significantly changed by stimulation, even though firing rates of individual neurons are strongly modified. I will show in which conditions a network model of excitatory and inhibitory neurons can reproduce this feature.
Context-Dependent Relationships between Locus Coeruleus Firing Patterns and Coordinated Neural Activity in the Anterior Cingulate Cortex
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when tonic (baseline) LC activity increases but are enhanced when external events drive phasic LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
CNStalk: Anatomo-functional organisation of the grasping network in the primate brain
Cortical functions result from the conjoint activity of different, reciprocally connected areas working together as large-scale functionally specialized networks. In the macaque brain, neural tracers and functional data have provided evidence for functionally specialized large-scale cortical networks involving temporal, parietal, and frontal areas. One of these networks, the lateral grasping network, appears to play a primary role in controlling hand action organization and recognition. Available functional and tractograpy data suggest the existence of a human counterpart of this network.
Multisensory encoding of self-motion in the retrosplenial cortex and beyond
In order to successfully navigate through the environment, animals must accurately estimate the status of their motion with respect to the surrounding scene and objects. In this talk, I will present our recent work on how retrosplenial cortical (RSC) neurons combine vestibular and visual signals to reliably encode the direction and speed of head turns during passive motion and active navigation. I will discuss these data in the context of RSC long-range connectivity and further show our ongoing work on building population-level models of motion representation across cortical and subcortical networks.
Neuronal variability and spatiotemporal dynamics in cortical network models
Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits. Zoom Meeting ID: 964 8138 3003 Contact host if you cannot connect.
Error correction and reliability timescale in converging cortical networks
Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.
Early constipation predicts faster dementia onset in Parkinson’s disease
Constipation is a common but not a universal feature in early PD, suggesting that gut involvement is heterogeneous and may be part of a distinct PD subtype with prognostic implications. We analysed data from the Parkinson’s Incidence Cohorts Collaboration, composed of incident community-based cohorts of PD patients assessed longitudinally over 8 years. Constipation was assessed with the MDS-UPDRS constipation item or a comparable categorical scale. Primary PD outcomes of interest were dementia, postural instability and death. PD patients were stratified according to constipation severity at diagnosis: none (n=313, 67.3%), minor (n=97, 20.9%) and major (n=55, 11.8%). Clinical progression to all 3 outcomes was more rapid in those with more severe constipation at baseline (Kaplan Meier survival analysis). Cox regression analysis, adjusting for relevant confounders, confirmed a significant relationship between constipation severity and progression to dementia, but not postural instability or death. Early constipation may predict an accelerated progression of neurodegenerative pathology. Conclusions: We show widespread cortical and subcortical grey matter micro-structure associations with schizophrenia PRS. Across all investigated phenotypes NDI, a measure of the density of myelinated axons and dendrites, showed the most robust associations with schizophrenia PRS. We interpret these results as indicative of reduced density of myelinated axons and dendritic arborization in large-scale cortico-subcortical networks mediating the genetic risk for schizophrenia.
All optical interrogation of developing GABAergic circuits in vivo
The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring and programmed cell-death. But cortical GABAergic neurons are also specified by very early developmental programs. For example, the earliest born GABAergic neurons develop into hub cells coordinating spontaneous activity in hippocampal slices. Despite their importance for the emergence of sensory experience, their role in coordinating network dynamics, and the role of activity in their integration into cortical networks, the collective in vivo dynamics of GABAergic neurons during the neonatal postnatal period remain unknown. Here, I will present data related to the coordinated activity between GABAergic cells of the mouse barrel cortex and hippocampus in non-anesthetized pups using the recent development of all optical methods to record and manipulate neuronal activity in vivo. I will show that the functional structure of developing GABAergic circuits is remarkably patterned, with segregated assemblies of prospective parvalbumin neurons and highly connected hub cells, both shaped by sensory-dependent processes.
Understanding sensorimotor control at global and local scales
The brain is remarkably flexible, and appears to instantly reconfigure its processing depending on what’s needed to solve a task at hand: fMRI studies indicate that distal brain areas appear to fluidly couple and decouple with one another depending on behavioral context. But the structural architecture of the brain is comprised of long-range axonal projections that are relatively fixed by adulthood. How does the global dynamism evident in fMRI recordings manifest at a cellular level? To bridge the gap between the activity of single neurons and cortex-wide networks, we correlated electrophysiological recordings of individual neurons in primary visual (V1) and retrosplenial (RSP) associational cortex with activity across dorsal cortex, recorded simultaneously using widefield calcium imaging. We found that individual neurons in both cortical areas independently engaged in different distributed cortical networks depending on the animal’s behavioral state, suggesting that locomotion puts cortex into a more sensory driven mode relevant for navigation.
Cortical networks for flexible decisions during spatial navigation
My lab seeks to understand how the mammalian brain performs the computations that underlie cognitive functions, including decision-making, short-term memory, and spatial navigation, at the level of the building blocks of the nervous system, cell types and neural populations organized into circuits. We have developed methods to measure, manipulate, and analyze neural circuits across various spatial and temporal scales, including technology for virtual reality, optical imaging, optogenetics, intracellular electrophysiology, molecular sensors, and computational modeling. I will present recent work that uses large scale calcium imaging to reveal the functional organization of the mouse posterior cortex for flexible decision-making during spatial navigation in virtual reality. I will also discuss work that uses optogenetics and calcium imaging during a variety of decision-making tasks to highlight how cognitive experience and context greatly alter the cortical circuits necessary for navigation decisions.
Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication
Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.
The emergence and modulation of time in neural circuits and behavior
Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior and cortical activity. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times can be accelerated or slowed down via gain modulation, flexibly induced by neuromodulation or perturbations; and how gain modulation may control response timing in the visual cortex. Finally, we will present a new biologically plausible way to generate a reservoir of multiple timescales in cortical circuits.
State-dependent cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
Correlations, chaos, and criticality in neural networks
The remarkable properties of information-processing of biological and of artificial neuronal networks alike arise from the interaction of large numbers of neurons. A central quest is thus to characterize their collective states. The directed coupling between pairs of neurons and their continuous dissipation of energy, moreover, cause dynamics of neuronal networks outside thermodynamic equilibrium. Tools from non-equilibrium statistical mechanics and field theory are thus instrumental to obtain a quantitative understanding. We here present progress with this recent approach [1]. On the experimental side, we show how correlations between pairs of neurons are informative on the dynamics of cortical networks: they are poised near a transition to chaos [2]. Close to this transition, we find prolongued sequential memory for past signals [3]. In the chaotic regime, networks offer representations of information whose dimensionality expands with time. We show how this mechanism aids classification performance [4]. Together these works illustrate the fruitful interplay between theoretical physics, neuronal networks, and neural information processing.
The interaction of sensory and motor information to shape neuronal representations in mouse cortical networks
The neurons in our brain never function in isolation; they are organized into complex circuits which perform highly specialized information processing tasks and transfer information through large neuronal networks. The aim of Janelle Pakan's research group is to better understand how neural circuits function during the transformation of information from sensory perception to behavioural output. Importantly, they also aim to further understand the cell-type specific processes that interrupt the flow of information through neural circuits in neurodegenerative disorders with dementia. The Pakan group utilizes innovative neuroanatomical tracing techniques, advanced in vivo two-photon imaging, and genetically targeted manipulations of neuronal activity to investigate the cell-type specific microcircuitry of the cerebral cortex, the macrocircuitry of cortical output to subcortical structures, and the functional circuitry underlying processes of sensory perception and motor behaviour.
The emergence and modulation of time in neural circuits and behavior
Spontaneous behavior in animals and humans shows a striking amount of variability both in the spatial domain (which actions to choose) and temporal domain (when to act). Concatenating actions into sequences and behavioral plans reveals the existence of a hierarchy of timescales ranging from hundreds of milliseconds to minutes. How do multiple timescales emerge from neural circuit dynamics? How do circuits modulate temporal responses to flexibly adapt to changing demands? In this talk, we will present recent results from experiments and theory suggesting a new computational mechanism generating the temporal variability underlying naturalistic behavior. We will show how neural activity from premotor areas unfolds through temporal sequences of attractors, which predict the intention to act. These sequences naturally emerge from recurrent cortical networks, where correlated neural variability plays a crucial role in explaining the observed variability in action timing. We will then discuss how reaction times in these recurrent circuits can be accelerated or slowed down via gain modulation, induced by neuromodulation or perturbations. Finally, we will present a general mechanism producing a reservoir of multiple timescales in recurrent networks.
Dimensions of variability in circuit models of cortex
Cortical circuits receive multiple inputs from upstream populations with non-overlapping stimulus tuning preferences. Both the feedforward and recurrent architectures of the receiving cortical layer will reflect this diverse input tuning. We study how population-wide neuronal variability propagates through a hierarchical cortical network receiving multiple, independent, tuned inputs. We present new analysis of in vivo neural data from the primate visual system showing that the number of latent variables (dimension) needed to describe population shared variability is smaller in V4 populations compared to those of its downstream visual area PFC. We successfully reproduce this dimensionality expansion from our V4 to PFC neural data using a multi-layer spiking network with structured, feedforward projections and recurrent assemblies of multiple, tuned neuron populations. We show that tuning-structured connectivity generates attractor dynamics within the recurrent PFC current, where attractor competition is reflected in the high dimensional shared variability across the population. Indeed, restricting the dimensionality analysis to activity from one attractor state recovers the low-dimensional structure inherited from each of our tuned inputs. Our model thus introduces a framework where high-dimensional cortical variability is understood as ``time-sharing’’ between distinct low-dimensional, tuning-specific circuit dynamics.
State-dependent regulation of cortical circuits
Spontaneous and sensory-evoked cortical activity is highly state-dependent, promoting the functional flexibility of cortical circuits underlying perception and cognition. Using neural recordings in combination with behavioral state monitoring, we find that arousal and motor activity have complementary roles in regulating local cortical operations, providing dynamic control of sensory encoding. These changes in encoding are linked to altered performance on perceptual tasks. Neuromodulators, such as acetylcholine, may regulate this state-dependent flexibility of cortical network function. We therefore recently developed an approach for dual mesoscopic imaging of acetylcholine release and neural activity across the entire cortical mantle in behaving mice. We find spatiotemporally heterogeneous patterns of cholinergic signaling across the cortex. Transitions between distinct behavioral states reorganize the structure of large-scale cortico-cortical networks and differentially regulate the relationship between cholinergic signals and neural activity. Together, our findings suggest dynamic state-dependent regulation of cortical network operations at the levels of both local and large-scale circuits.
Towards multipurpose biophysics-based mathematical models of cortical circuits
Starting with the work of Hodgkin and Huxley in the 1950s, we now have a fairly good understanding of how the spiking activity of neurons can be modelled mathematically. For cortical circuits the understanding is much more limited. Most network studies have considered stylized models with a single or a handful of neuronal populations consisting of identical neurons with statistically identical connection properties. However, real cortical networks have heterogeneous neural populations and much more structured synaptic connections. Unlike typical simplified cortical network models, real networks are also “multipurpose” in that they perform multiple functions. Historically the lack of computational resources has hampered the mathematical exploration of cortical networks. With the advent of modern supercomputers, however, simulations of networks comprising hundreds of thousands biologically detailed neurons are becoming feasible (Einevoll et al, Neuron, 2019). Further, a large-scale biologically network model of the mouse primary visual cortex comprising 230.000 neurons has recently been developed at the Allen Institute for Brain Science (Billeh et al, Neuron, 2020). Using this model as a starting point, I will discuss how we can move towards multipurpose models that incorporate the true biological complexity of cortical circuits and faithfully reproduce multiple experimental observables such as spiking activity, local field potentials or two-photon calcium imaging signals. Further, I will discuss how such validated comprehensive network models can be used to gain insights into the functioning of cortical circuits.
The integration of parvalbumin and somatostatin interneurons into cortical networks:both nature and nurture
Positive and negative feedback in seizure initiation
Seizure onset is a critically important brain state transition that has proved very difficult to predict accurately from recordings of brain activity. I will present new data acquired using a range of optogenetic and imaging tools to characterize exactly how cortical networks change in the build-up to a seizure. I will show how intermittent optogenetic stimulation ("active probing") reveals a latent change in dendritic excitability that is tightly correlated to the onset of seizure activity. This data relates back to old work from the 1980s suggesting a critical role in epileptic pathophysiology for dendritic plateau potentials. Our data show how the precipitous nature of the transition can be understood in terms of multiple, synergistic positive feedback mechanisms.
Autism-Associated Shank3 Is Essential for Homeostatic Compensation in Rodent Visual Cortex
Neocortical networks must generate and maintain stable activity patterns despite perturbations induced by learning and experience- dependent plasticity. There is abundant theoretical and experimental evidence that network stability is achieved through homeostatic plasticity mechanisms that adjust synaptic and neuronal properties to stabilize some measure of average activity, and this process has been extensively studied in primary visual cortex (V1), where chronic visual deprivation induces an initial drop in activity and ensemble average firing rates (FRs), but over time activity is restored to baseline despite continued deprivation. Here I discuss recent work from the lab in which we followed this FR homeostasis in individual V1 neurons in freely behaving animals during a prolonged visual deprivation/eye-reopening paradigm. We find that - when FRs are perturbed by manipulating sensory experience - over time they return precisely to a cell-autonomous set-point. Finally, we find that homeostatic plasticity is perturbed in a mouse model of Autism spectrum disorder, and this results in a breakdown of FRH within V1. These data suggest that loss of homeostatic plasticity is one primary cause of excitation/inhibition imbalances in ASD models. Together these studies illuminate the role of stabilizing plasticity mechanisms in the ability of neocortical circuits to recover robust function following challenges to their excitability.
Flexible motor sequencing through thalamic control of cortical dynamics
The mechanisms by which neural circuits generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. During movement sequences, electrophysiological recordings of basal ganglia output neurons show sustained activity patterns that switch at the boundaries between motifs. Thus, we model these inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise robust way. If the thalamic units associated with each motif are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
Synaptic modulation facilitates adaptation in cortical networks
Bernstein Conference 2024
Emergence of modular patterned activity in developing cortex through intracortical network interactions
COSYNE 2022
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
COSYNE 2022
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
COSYNE 2022
Revealing latent knowledge in cortical networks during goal-directed learning
COSYNE 2022
Revealing latent knowledge in cortical networks during goal-directed learning
COSYNE 2022
Single-phase deep learning in cortico-cortical networks
COSYNE 2022
Single-phase deep learning in cortico-cortical networks
COSYNE 2022
Statistics of sub-threshold voltage dynamics in cortical networks
COSYNE 2022
Statistics of sub-threshold voltage dynamics in cortical networks
COSYNE 2022
Distributing task-related neural activity across a cortical network through task-independent connections
COSYNE 2023
Rapid fluctuations in multi-scale correlations of cortical networks encode spontaneous behavior
COSYNE 2023
Synaptic low-rank modulation facilitates adaptation in cortical networks
COSYNE 2023
Development of modular cortical networks during spontaneous linear waves in tree shrew visual cortex
COSYNE 2025
Astrocytes act as detectors of sensory input and calcium-dependent regulators of experience-dependent plasticity in cortical networks
FENS Forum 2024
Causal interactions between multisite phase- and amplitude-coupling in cortical networks
FENS Forum 2024
Cholinergic-dependent slow-wave oscillations in the claustro-cortical networks in vitro
FENS Forum 2024
Cortical network reorganization of congenital and perinatal blindness in mice
FENS Forum 2024
Early cortical network deficits underlying abnormal stimulus perception in Shank3b+/- mice
FENS Forum 2024
Free memory recall is preceded by global cortical network of coincident ripple bursting
FENS Forum 2024
High-resolution fMRI reveals an extensive cortical network responding to conspecific emotional vocalisations in macaques
FENS Forum 2024
Influence of enhanced early sensory experience on functional cortical networks and behaviour
FENS Forum 2024
Prefrontal orchestration: Cortical networks for rodent action control
FENS Forum 2024
Shaping neocortical networks via maturation of synaptic functions in VIP-positive GABAergic interneurons
FENS Forum 2024
cortical network coverage
59 items