TopicNeuro

data collection

10 Seminars1 Position

Latest

SeminarNeuroscience

HealthCore: A modular data collection ecosystem to connect the dots in Neurorehab

Chris Awai
Lake Lucerne Institute, Switzerland
Jun 5, 2025
SeminarNeuroscienceRecording

A discussion on the necessity for Open Source Hardware in neuroscience research

Andre Maia Chagas
University of Sussex
Mar 29, 2021

Research tools are paramount for scientific development, they enable researchers to observe and manipulate natural phenomena, learn their principles, make predictions and develop new technologies, treatments and improve living standards. Due to their costs and the geographical distribution of manufacturing companies access to them is not widely available, hindering the pace of research, the ability of many communities to contribute to science and education and reap its benefits. One possible solution for this issue is to create research tools under the open source ethos, where all documentation about them (including their designs, building and operating instructions) are made freely available. Dubbed Open Science Hardware (OSH), this production method follows the established and successful principles of open source software and brings many advantages over traditional creation methods such as: economic savings (see Pearce 2020 for potential economic savings in developing open source research tools), distributed manufacturing, repairability, and higher customizability. This development method has been greatly facilitated by recent technological developments in fast prototyping tools, Internet infrastructure, documentation platforms and lower costs of electronic off-the-shelf components. Taken together these benefits have the potential to make research more inclusive, equitable, distributed and most importantly, more reliable and reproducible, as - 1) researchers can know their tools inner workings in minute detail - 2) they can calibrate their tools before every experiment and having them running in optimal condition everytime - 3) given their lower price point, a)students can be trained/taught with hands on classes, b) several copies of the same instrument can be built leading to a parallelization of data collection and the creation of more robust datasets. - 4) Labs across the world can share the exact same type of instruments and create collaborative projects with standardized data collection and sharing.

SeminarNeuroscience

MidsummerBrains - computational neuroscience from my point of view

Christian Leibold
LMU Munich
Jul 22, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

SeminarNeuroscienceRecording

MidsummerBrains - computational neuroscience from my point of view

Julijana Gjorgjieva
MPI brain research
Jul 15, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

SeminarNeuroscienceRecording

MidsummerBrains - computational neuroscience from my point of view

Katharina Wilmes
University of Bern
Jul 8, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

SeminarNeuroscienceRecording

MidsummerBrains - computational neuroscience from my point of view

Jutta Kretzberg
University of Oldenburg
Jul 1, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

SeminarNeuroscience

MidsummerBrains - computational neuroscience from my point of view

Hermann Cuntz
Ernst Strüngmann Institute & Frankfurt Institute for Advanced Studies
Jun 30, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

SeminarNeuroscienceRecording

MidsummerBrains - computational neuroscience from my point of view

Constantin Rothkopf
TU Darmstadt
Jun 24, 2020

Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.

data collection coverage

11 items

Seminar10
Position1
Domain spotlight

Explore how data collection research is advancing inside Neuro.

Visit domain