data collection
Latest
Arun Antony MD
The Neuroscience Institute at Jersey Shore University Medical Center, New Jersey, USA is seeking a postdoctoral fellow to work on basic, clinical, and translational projects in the fields of seizures, epilepsy, human intracranial EEG, signal processing, cognition and consciousness. The fellow will join a multidisciplinary team of five epileptologists, neurosurgeons, epilepsy nurses, nurse practitioners, neuropsychologists and researchers providing holistic care to patients with epilepsy. The postdoctoral fellows will have access to the large clinical, imaging, and EEG databases, and outcome measures of cutting edge treatment modalities within the system for research purposes. The successful candidate will be well versed in data collection, processing, programming and will lead an independent research project working closely with collaborators and publish high-quality research.
HealthCore: A modular data collection ecosystem to connect the dots in Neurorehab
Biopsychosocial pathways in dementia inequalities
In the United States, racial/ethnic inequalities in Alzheimer's disease and related dementias persist even after controlling for socioeconomic factors and physical health. These persistent and unexplained disparities suggest: (1) there are unrecognized dementia risk factors that are socially patterned and/or (2) known dementia risk factors exhibit differential impact across social groups. Pursuing these research directions with data from multiple longitudinal studies of brain and cognitive aging has revealed several challenges to the study of late-life health inequalities, highlighted evidence for both risk and resilience within marginalized communities, and inspired new data collection efforts to advance the field.
A discussion on the necessity for Open Source Hardware in neuroscience research
Research tools are paramount for scientific development, they enable researchers to observe and manipulate natural phenomena, learn their principles, make predictions and develop new technologies, treatments and improve living standards. Due to their costs and the geographical distribution of manufacturing companies access to them is not widely available, hindering the pace of research, the ability of many communities to contribute to science and education and reap its benefits. One possible solution for this issue is to create research tools under the open source ethos, where all documentation about them (including their designs, building and operating instructions) are made freely available. Dubbed Open Science Hardware (OSH), this production method follows the established and successful principles of open source software and brings many advantages over traditional creation methods such as: economic savings (see Pearce 2020 for potential economic savings in developing open source research tools), distributed manufacturing, repairability, and higher customizability. This development method has been greatly facilitated by recent technological developments in fast prototyping tools, Internet infrastructure, documentation platforms and lower costs of electronic off-the-shelf components. Taken together these benefits have the potential to make research more inclusive, equitable, distributed and most importantly, more reliable and reproducible, as - 1) researchers can know their tools inner workings in minute detail - 2) they can calibrate their tools before every experiment and having them running in optimal condition everytime - 3) given their lower price point, a)students can be trained/taught with hands on classes, b) several copies of the same instrument can be built leading to a parallelization of data collection and the creation of more robust datasets. - 4) Labs across the world can share the exact same type of instruments and create collaborative projects with standardized data collection and sharing.
Panel discussion: Practical advice for reproducibility in neuroscience
This virtual, interactive panel on reproducibility in neuroscience will focus on practical advice that researchers at all career stages could implement to improve the reproducibility of their work, from power analyses and pre-registering reports to selecting statistical tests and data sharing. The event will comprise introductions of our speakers and how they came to be advocates for reproducibility in science, followed by a 25-minute discussion on reproducibility, including practical advice for researchers on how to improve their data collection, analysis, and reporting, and then 25 minutes of audience Q&A. In total, the event will last one hour and 15 minutes. Afterwards, some of the speakers will join us for an informal chat and Q&A reserved only for students/postdocs.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
MidsummerBrains - computational neuroscience from my point of view
Computational neuroscience is a highly interdisciplinary field ranging from mathematics, physics and engineering to biology, medicine and psychology. Interdisciplinary collaborations have resulted in many groundbreaking innovations both in the research and application. The basis for successful collaborations is the ability to communicate across disciplines: What projects are the others working on? Which techniques and methods are they using? How is data collected, used and stored? In this webinar series, several experts describe their view on computational neuroscience in theory and application, and share experiences they had with interdisciplinary projects. This webinar is open for all interested students and researchers. If you are interested to participate live, please send a short message to smartstart@fz-juelich.de Please note, these lectures will be recorded for subsequent publishing as online lecture material.
data collection coverage
11 items