Latest

SeminarNeuroscience

Brain-on-a-Chip: Advanced In Vitro Platforms for Drug Screening and Disease Modeling

Pediaditakis Iosif (Sifis)
Phragma Therapeutics
Nov 21, 2024
SeminarNeuroscience

Zebrafish models help untangle genetic interactions in motor neuron degeneration

Sorana Ciura
Imagine Institute, Université de Paris
May 31, 2022

Due to high homology to the human genome and rapid development, zebrafish have been successfully used to model diseases of the neuromuscular system. In this seminar, I will present current advances in modeling genetic causes of Amyotrophic Lateral Sclerosis (ALS), the most common motor neuron degeneration and show how epistatic interaction studies in zebrafish have helped elucidate synergistic effects of major ALS genes and their cellular targets.

SeminarNeuroscienceRecording

In vitro bioelectronic models of the gut-brain axis

Róisín Owens
Department of Chemical Engineering and Biotechnology, University of Cambridge
Oct 19, 2021

The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.

SeminarNeuroscienceRecording

Using Human Stem Cells to Uncover Genetic Epilepsy Mechanisms

Jack Parent
University of Michigan Medical School.
Jul 21, 2021

Reprogramming somatic cells to a pluripotent state via the induced pluripotent stem cell (iPSC) method offers an increasingly utilized approach for neurological disease modeling with patient-derived cells. Several groups, including ours, have applied the iPSC approach to model severe genetic developmental and epileptic encephalopathies (DEEs) with patient-derived cells. Although most studies to date involve 2-D cultures of patient-derived neurons, brain organoids are increasingly being employed to explore genetic DEE mechanisms. We are applying this approach to understand PMSE (Polyhydramnios, Megalencephaly and Symptomatic Epilepsy) syndrome, Rett Syndrome (in collaboration with Ben Novitch at UCLA) and Protocadherin-19 Clustering Epilepsy (PCE). I will describe our findings of robust structural phenotypes in PMSE and PCE patient-derived brain organoid models, as well as functional abnormalities identified in fusion organoid models of Rett syndrome. In addition to showing epilepsy-relevant phenotypes, both 2D and brain organoid cultures offer platforms to identify novel therapies. We will also discuss challenges and recent advances in the brain organoid field, including a new single rosette brain organoid model that we have developed. The field is advancing rapidly and our findings suggest that brain organoid approaches offers great promise for modeling genetic neurodevelopmental epilepsies and identifying precision therapies.

disease modeling coverage

6 items

Seminar6
Domain spotlight

Explore how disease modeling research is advancing inside Neuro.

Visit domain