Latest

SeminarNeuroscienceRecording

Principles of Cognitive Control over Task Focus and Task

Tobias Egner
Duke University, USA
Sep 11, 2024

2024 BACN Mid-Career Prize Lecture Adaptive behavior requires the ability to focus on a current task and protect it from distraction (cognitive stability), and to rapidly switch tasks when circumstances change (cognitive flexibility). How people control task focus and switch-readiness has therefore been the target of burgeoning research literatures. Here, I review and integrate these literatures to derive a cognitive architecture and functional rules underlying the regulation of stability and flexibility. I propose that task focus and switch-readiness are supported by independent mechanisms whose strategic regulation is nevertheless governed by shared principles: both stability and flexibility are matched to anticipated challenges via an incremental, online learner that nudges control up or down based on the recent history of task demands (a recency heuristic), as well as via episodic reinstatement when the current context matches a past experience (a recognition heuristic).

SeminarNeuroscience

Prefrontal mechanisms involved in learning distractor-resistant working memory in a dual task

Albert Compte
IDIBAPS
Nov 17, 2023

Working memory (WM) is a cognitive function that allows the short-term maintenance and manipulation of information when no longer accessible to the senses. It relies on temporarily storing stimulus features in the activity of neuronal populations. To preserve these dynamics from distraction it has been proposed that pre and post-distraction population activity decomposes into orthogonal subspaces. If orthogonalization is necessary to avoid WM distraction, it should emerge as performance in the task improves. We sought evidence of WM orthogonalization learning and the underlying mechanisms by analyzing calcium imaging data from the prelimbic (PrL) and anterior cingulate (ACC) cortices of mice as they learned to perform an olfactory dual task. The dual task combines an outer Delayed Paired-Association task (DPA) with an inner Go-NoGo task. We examined how neuronal activity reflected the process of protecting the DPA sample information against Go/NoGo distractors. As mice learned the task, we measured the overlap between the neural activity onto the low-dimensional subspaces that encode sample or distractor odors. Early in the training, pre-distraction activity overlapped with both sample and distractor subspaces. Later in the training, pre-distraction activity was strictly confined to the sample subspace, resulting in a more robust sample code. To gain mechanistic insight into how these low-dimensional WM representations evolve with learning we built a recurrent spiking network model of excitatory and inhibitory neurons with low-rank connections. The model links learning to (1) the orthogonalization of sample and distractor WM subspaces and (2) the orthogonalization of each subspace with irrelevant inputs. We validated (1) by measuring the angular distance between the sample and distractor subspaces through learning in the data. Prediction (2) was validated in PrL through the photoinhibition of ACC to PrL inputs, which induced early-training neural dynamics in well-trained animals. In the model, learning drives the network from a double-well attractor toward a more continuous ring attractor regime. We tested signatures for this dynamical evolution in the experimental data by estimating the energy landscape of the dynamics on a one-dimensional ring. In sum, our study defines network dynamics underlying the process of learning to shield WM representations from distracting tasks.

SeminarNeuroscienceRecording

Stability-Flexibility Dilemma in Cognitive Control: A Dynamical System Perspective

Naomi Leonard
Princeton University
Mar 26, 2021

Constraints on control-dependent processing have become a fundamental concept in general theories of cognition that explain human behavior in terms of rational adaptations to these constraints. However, theories miss a rationale for why such constraints would exist in the first place. Recent work suggests that constraints on the allocation of control facilitate flexible task switching at the expense of the stability needed to support goal-directed behavior in face of distraction. We formulate this problem in a dynamical system, in which control signals are represented as attractors and in which constraints on control allocation limit the depth of these attractors. We derive formal expressions of the stability-flexibility tradeoff, showing that constraints on control allocation improve cognitive flexibility but impair cognitive stability. We provide evidence that human participants adapt higher constraints on the allocation of control as the demand for flexibility increases but that participants deviate from optimal constraints. In continuing work, we are investigating how collaborative performance of a group of individuals can benefit from individual differences defined in terms of balance between cognitive stability and flexibility.

distraction coverage

3 items

Seminar3
Domain spotlight

Explore how distraction research is advancing inside Neuro.

Visit domain