Drug Delivery
drug delivery
Latest
The glymphatic system in motor neurone disease
Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.
The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models
Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features. As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110
Improving Communication With the Brain Through Electrode Technologies
Over the past 30 years bionic devices such as cochlear implants and pacemakers, have used a small number of metal electrodes to restore function and monitor activity in patients following disease or injury of excitable tissues. Growing interest in neurotechnologies, facilitated by ventures such as BrainGate, Neuralink and the European Human Brain Project, has increased public awareness of electrotherapeutics and led to both new applications for bioelectronics and a growing demand for less invasive devices with improved performance. Coupled with the rapid miniaturisation of electronic chips, bionic devices are now being developed to diagnose and treat a wide variety of neural and muscular disorders. Of particular interest is the area of high resolution devices that require smaller, more densely packed electrodes. Due to poor integration and communication with body tissue, conventional metallic electrodes cannot meet these size and spatial requirements. We have developed a range of polymer based electronic materials including conductive hydrogels (CHs), conductive elastomers (CEs) and living electrodes (LEs). These technologies provide synergy between low impedance charge transfer, reduced stiffness and an ability to be provide a biologically active interface. A range of electrode approaches are presented spanning wearables, implantables and drug delivery devices. This talk outlines the materials development and characterisation of both in vitro properties and translational in vivo performance. The challenges for translation and commercial uptake of novel technologies will also be discussed.
Electronics on the brain
One of the most important scientific and technological frontiers of our time is the interfacing of electronics with the human brain. This endeavour promises to help understand how the brain works and deliver new tools for diagnosis and treatment of pathologies including epilepsy and Parkinson’s disease. Current solutions, however, are limited by the materials that are brought in contact with the tissue and transduce signals across the biotic/abiotic interface. Recent advances in electronics have made available materials with a unique combination of attractive properties, including mechanical flexibility, mixed ionic/electronic conduction, enhanced biocompatibility, and capability for drug delivery. Professor Malliaras will present examples of novel devices for recording and stimulation of neurons and show that organic electronic materials offer tremendous opportunities to study the brain and treat its pathologies.
drug delivery coverage
4 items