drug target
Latest
Gene regulation networks in nervous system cancers: identification of novel drug targets
Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia
The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.
The Kappa Opioid Receptor as Potential Drug Target in TLE
The Kappa Opioid Receptor as Potential Drug Target in TLE Over the last decades, neuropeptides and their receptors received increasing interest as drug targets for multiple purposes. Our interest focuses on the endogenous opioid system and more specifically on dynorphins and the kappa opioid receptor (KOR). Activation of KOR blocks presynaptic Calcium channels and facilitates postsynaptic Potassium release, thereby dampening signal transduction. As KORs are situated on excitatory neurons in the hippocampus, this makes them an interesting target in temporal lobe epilepsy.
The cellular phase of Alzheimer’s Disease: from genes to cells
The amyloid cascade hypothesis for Alzheimer disease ((Hardy and Selkoe, 2002; Hardy and Higgins, 1992; Selkoe, 1991), updated in (Karran et al., 2011) provides a linear model for the pathogenesis of AD with Aβ accumulation upstream and Tau pathology, inflammation, synaptic dysfunction, neuronal loss and dementia downstream, all interlinked, initiated and driven by Aβ42 peptides or oligomers. The genetic mutations causing familial Alzheimer disease seem to support this model. The nagging problem remains however that the postulated causal, and especially the ’driving’ role of abnormal Aβ aggregation or Aβ oligomer formation could not be convincingly demonstrated until now. Indeed, many questions (e.g. what causes Aβ toxicity, what is the relation between Aβ and Tau pathology, what causes neuronal death, why is amyloid deposition not correlated with dementia etc…) were already raised when the amyloid hypothesis was conceived 25 years ago. These questions remain in essence unanswered. It seems that the old paradigm is not tenable: the amyloid cascade is too linear, too neurocentric, and does not take into account the long time lag between the biochemical phase i.e. the appearance of amyloid plaques and neuronal tangles and the ultimate clinical phase, i.e. the manifestation of dementia. The pathways linking these two phases must be complex and tortuous. We have called this the cellular phase of AD (De Strooper and Karran, 2016) to suggest that a long period of action and reaction involving neurons, neuronal circuitry but also microglia, astroglia, oligodendrocytes, and the vasculature underlies the disease. In fact it is this long disease process that should be studied in the coming years. While microglia are part of this process, they should not be considered as the only component of the cellular phase. We expect that further clinical investigations and novel tools will allow to diagnose the effects of the cellular changes in the brain and provide clinical signs for this so called preclinical or prodromal AD. Furthermore the better understanding of this phase will lead to completely novel drug targets and treatments and will lead to an era where patients will receive an appropriate therapy according to their clinical stage. In this view anti-amyloid therapy is probably only effective and useful in the very early stage of the disease and AD does no longer equal to dementia. We will discuss in our talk how single cell technology and transplantation of human iPS cells into mouse brain allow to start to map in a systematic way the cellular phase of Alzheimer’s Disease.
From systems biology to drug targets: ATP synthase subunit upregulation causes mitochondrial dysfunction in Shank3Δ4-22 mouse model of autism
FENS Forum 2024
drug target coverage
5 items