Latest

SeminarNeuroscienceRecording

Brain dynamics and flexible behaviors

Lucina Uddin
Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
Mar 16, 2022

Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.

SeminarNeuroscience

From 1D to 5D: Data-driven Discovery of Whole-brain Dynamic Connectivity in fMRI Data

Vince Calhoun
Founding Director, Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA
May 20, 2021

The analysis of functional magnetic resonance imaging (fMRI) data can greatly benefit from flexible analytic approaches. In particular, the advent of data-driven approaches to identify whole-brain time-varying connectivity and activity has revealed a number of interesting relevant variation in the data which, when ignored, can provide misleading information. In this lecture I will provide a comparative introduction of a range of data-driven approaches to estimating time-varying connectivity. I will also present detailed examples where studies of both brain health and disorder have been advanced by approaches designed to capture and estimate time-varying information in resting fMRI data. I will review several exemplar data sets analyzed in different ways to demonstrate the complementarity as well as trade-offs of various modeling approaches to answer questions about brain function. Finally, I will review and provide examples of strategies for validating time-varying connectivity including simulations, multimodal imaging, and comparative prediction within clinical populations, among others. As part of the interactive aspect I will provide a hands-on guide to the dynamic functional network connectivity toolbox within the GIFT software, including an online didactic analytic decision tree to introduce the various concepts and decisions that need to be made when using such tools

dynamic connectivity coverage

2 items

Seminar2
Domain spotlight

Explore how dynamic connectivity research is advancing inside Neuro.

Visit domain