dystonia
Latest
Treatable dystonias & dystonia in inborn errors of metabolism
Sleepless in Vienna - how to rescue folding-deficient dopamine transporters by pharmacochaperoning
Diseases that arise from misfolding of an individual protein are rare. However, collectively, these folding diseases represent a large proportion of hereditary and acquired disorders. In fact, the term "Molecular Medicine" was coined by Linus Pauling in conjunction with the study of a folding disease, i.e. sickle cell anemia. In the past decade, we have witnessed an exponential growth in the number of mutations, which have been identified in genes encoding solute carriers (SLC). A sizable faction - presumably the majority - of these mutations result in misfolding of the encoded protein. While studying the export of the GABA transporter (SLC6A1) and of the serotonin transporter (SLC6A4), from the endoplasmic reticulum (ER), we discovered by serendipity that some ligands can correct the folding defect imparted by point mutations. These bind to the inward facing state. The most effective compound is noribogaine, the metabolite of ibogaine (an alkaloid first isolated from the shrub Tabernanthe iboga). There are 13 mutations in the human dopamine transporter (DAT, SLC6A3), which give rise to a syndrome of infantile Parkinsonism and dystonia. We capitalized on our insights to explore, if the disease-relevant mutant proteins were amenable to pharmacological correction. Drosopohila melanogaster, which lack the dopamine transporter, are hyperactive and sleepless (fumin in Japanese). Thus, mutated human DAT variants can be introduced into fumin flies. This allows for examining the effect of pharmacochaperones on delivery of DAT to the axonal territory and on restoring sleep. We explored the chemical space populated by variations of the ibogaine structure to identify an analogue (referred to as compound 9b), which was highly effective: compound 9b also restored folding in DAT variants, which were not amenable to rescue by noribogaine. Deficiencies in the human creatine transporter-1 (CrT1, SLC6A8) give rise to a syndrome of intellectual disability and seizures and accounts for 5% of genetically based intellectual disabilities in boys. Point mutations occur, in part, at positions, which are homologous to those of folding-deficient DAT variants. CrT1 lacks the rich pharmacology of monoamine transporters. Nevertheless, our insights are also applicable to rescuing some disease-related variants of CrT1. Finally, the question arises how one can address the folding problem. We propose a two-pronged approach: (i) analyzing the effect of mutations on the transport cycle by electrophysiological recordings; this allows for extracting information on the rates of conformational transitions. The underlying assumption posits that - even when remedied by pharmacochaperoning - folding-deficient mutants must differ in the conformational transitions associated with the transport cycle. (ii) analyzing the effect of mutations on the two components of protein stability, i.e. thermodynamic and kinetic stability. This is expected to provide a glimpse of the energy landscape, which governs the folding trajectory.
Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy
Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.
Myoclonus dystonia
Genetic dystonia and treatment
Movement initiation reveals a hyperactive direct pathway in a mouse model of dystonia
FENS Forum 2024
Neural bursts and firing regularity as convergent neural dynamics in globus pallidus for genetic dystonia syndromes
FENS Forum 2024
Neuropathology of the striatum in X-linked dystonia parkinsonism
FENS Forum 2024
Outcome of deep brain stimulation of the globus pallidus pars interna in genetic dystonia syndromes
FENS Forum 2024
Role of cerebellar network excitability and plasticity in the pathophysiology of dystonia
FENS Forum 2024
Transgenic mouse model of Parkinsonism-dystonia type 2 (PKDYS2)
FENS Forum 2024
Understanding the synaptic basis of dystonia pathogenesis triggered by RIMBP1 mutations
FENS Forum 2024
dystonia coverage
12 items