Efficient
efficient communication
Latest
Networking—the key to success… especially in the brain
In our everyday lives, we form connections and build up social networks that allow us to function successfully as individuals and as a society. Our social networks tend to include well-connected individuals who link us to other groups of people that we might otherwise have limited access to. In addition, we are more likely to befriend individuals who a) live nearby and b) have mutual friends. Interestingly, neurons tend to do the same…until development is perturbed. Just like social networks, neuronal networks require highly connected hubs to elicit efficient communication at minimal cost (you can’t befriend everybody you meet, nor can every neuron wire with every other!). This talk will cover some of Alex’s work showing that microscopic (cellular scale) brain networks inferred from spontaneous activity show similar complex topology to that previously described in macroscopic human brain scans. The talk will also discuss what happens when neurodevelopment is disrupted in the case of a monogenic disorder called Rett Syndrome. This will include simulations of neuronal activity and the effects of manipulation of model parameters as well as what happens when we manipulate real developing networks using optogenetics. If functional development can be restored in atypical networks, this may have implications for treatment of neurodevelopmental disorders like Rett Syndrome.
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
efficient communication coverage
2 items