Electron Microscopy
electron microscopy
Latest
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Malignant synaptic plasticity in pediatric high-grade gliomas
Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.
Learning binds novel inputs into functional synaptic clusters via spinogenesis
Learning is known to induce the formation of new dendritic spines, but despite decades of effort, the functional properties of new spines in vivo remain unknown. Here, using a combination of longitudinal in vivo 2-photon imaging of the glutamate reporter, iGluSnFR, and correlated electron microscopy (CLEM) of dendritic spines on the apical dendrites of L2/3 excitatory neurons in the motor cortex during motor learning, we describe a framework of new spines' formation, survival, and resulting function. Specifically, our data indicate that the potentiation of a subset of clustered, pre-existing spines showing task-related activity in early sessions of learning creates a micro-environment of plasticity within dendrites, wherein multiple filopodia sample the nearby neuropil, form connections with pre-existing boutons connected to allodendritic spines, and are then selected for survival based on co-activity with nearby task-related spines. Thus, the formation and survival of new spines is determined by the functional micro-environment of dendrites. After formation, new spines show preferential co-activation with nearby task-related spines. This synchronous activity is more specific to movements than activation of the individual spines in isolation, and further, is coincident with movements that are more similar to the learned pattern. Thus, new spines functionally engage with their parent clusters to signal the learned movement. Finally, by reconstructing the axons associated with new spines, we found that they synapse with axons previously unrepresented in these dendritic domains, suggesting that the strong local co-activity structure exhibited by new spines is likely not due to axon sharing. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve the learned behavior.
Neural cartography: Mapping the brain with X-ray and electron microscopy
New tools for monitoring and manipulating neural circuits
Dr. Looger will present updates on a variety of molecular tools for studying & manipulating neural circuits & other preparations. Topics include genetically encoded calcium indicators (including the new ultra-fast jGCaMP8 variants), neurotransmitter sensors (improved versions for following glutamate, GABA, acetylcholine, serotonin), optogenetic effectors including the new “enhanced Magnets” dimerizers, AAV serotypes for retrograde labeling & altered tropism, probes for correlative light-electron microscopy, chemical gene switches, etc. He will make all his slides freely available - so don’t worry about hurriedly taking notes; instead focus on questions and ideas for collaboration. Please bring your suggestions for molecular tools that would be transformative for the field.
The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models
Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features. As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110
Hard x-ray imaging of biological soft tissues
The aim of this half day virtual meeting is to consider what is currently achievable with existing techniques and to explore where advancements can be made in the short and medium term. Leading scientists in the field will highlight the questions currently being addressed using hard X-ray imaging techniques, volume electron microscopy and their combination with other imaging modalities, with a forward look to areas of opportunity becoming accessible as a result of the recent and upcoming synchrotron upgrades. We expect an exciting day filled with science focused talks and lively discussions on how the field will develop over the next few years.
Visualizing the multi-scale complexity of the brain
The brain is complex over multiple length-scales, from many protein molecules forming intricate nano-machines in a synapse to many neurons forming interconnected networks across the brain. Unraveling this multi-scale complexity is fundamental to our understanding of brain function and disease. In this lecture, I will introduce advances in visualizing the complex, multi-scale structures in the brain. Emphasis will be on new imaging techniques, including cryo electron tomography and correlative light-electron microscopy that enabled revealing in situ organization of synaptic molecules, and ultra-high speed volumetric imaging method VISoR developed to map brain-wide circuits at subcellular resolution. I will also discuss challenges and opportunities for interdisciplinary research collaboration to analyze and understand the enormous data generated by these cutting-edge technologies.
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.
Neural circuit and genetic bases of behaviour in Platynereis larva
We study the larval stages of the marine annelid Platynereis dumerilii, a powerful experimental system for neural circuits. With serial electron microscopy, we have reconstructed the entire nervous and effector systems of a Platynereis larva. We use neurogenetics, activity imaging, and behavioural experiments to understand circuit activity and how the nervous system controls behaviour and physiology. Platynereis is one of very few systems where these different approaches can be combined to study an entire nervous system. I will talk about circuits for the whole-body coordination of locomotor cilia and a hydrodynamic startle response for predator avoidance.
A journey through connectomics: from manual tracing to the first fully automated basal ganglia connectomes
The "mind of the worm", the first electron microscopy-based connectome of C. elegans, was an early sign of where connectomics is headed, followed by a long time of little progress in a field held back by the immense manual effort required for data acquisition and analysis. This changed over the last few years with several technological breakthroughs, which allowed increases in data set sizes by several orders of magnitude. Brain tissue can now be imaged in 3D up to a millimeter in size at nanometer resolution, revealing tissue features from synapses to the mitochondria of all contained cells. These breakthroughs in acquisition technology were paralleled by a revolution in deep-learning segmentation techniques, that equally reduced manual analysis times by several orders of magnitude, to the point where fully automated reconstructions are becoming useful. Taken together, this gives neuroscientists now access to the first wiring diagrams of thousands of automatically reconstructed neurons connected by millions of synapses, just one line of program code away. In this talk, I will cover these developments by describing the past few years' technological breakthroughs and discuss remaining challenges. Finally, I will show the potential of automated connectomics for neuroscience by demonstrating how hypotheses in reinforcement learning can now be tackled through virtual experiments in synaptic wiring diagrams of the songbird basal ganglia.
Predicting the future from the past: Motion processing in the primate retina
The Manookin lab is investigating the structure and function of neural circuits within the retina and developing techniques for treating blindness. Many blinding diseases, such as retinitis pigmentosa, cause death of the rods and cones, but spare other cell types within the retina. Thus, many techniques for restoring visual function following blindness are based on the premise that other cells within the retina remain viable and capable of performing their various roles in visual processing. There are more than 80 different neuronal types in the human retina and these form the components of the specialized circuits that transform the signals from photoreceptors into a neural code responsible for our perception of color, form, and motion, and thus visual experience. The Manookin laboratory is investigating the function and connectivity of neural circuits in the retina using a variety of techniques including electrophysiology, calcium imaging, and electron microscopy. This knowledge is being used to develop more effective techniques for restoring visual function following blindness.
Neuroscience Investigations in the Virgin Lands of African Biodiversity
Africa is blessed with a rich diversity and abundance in rodent and avian populations. This natural endowment on the continent portends research opportunities to study unique anatomical profiles and investigate animal models that may confer better neural architecture to study neurodegenerative diseases, adult neurogenesis, stroke and stem cell therapies. To this end, African researchers are beginning to pay closer attention to some of her indigenous rodents and birds in an attempt to develop spontaneous laboratory models for homegrown neuroscience-based research. For this presentation, I will be showing studies in our lab, involving cellular neuroanatomy of two rodents, the African giant rat (AGR) and Greater cane rat (GCR), Eidolon Bats (EB) and also the Striped Owl (SO). Using histological stains (Cresyl violet and Rapid Golgi) and immunohistochemical biomarkers (GFAP, NeuN, CNPase, Iba-1, Collagen 2, Doublecortin, Ki67, Calbindin, etc), and Electron Microscopy, morphology and functional organizations of neuronal and glial populations of the AGR , GCR, EB and SO brains have been described, with our work ongoing. In addition, the developmental profiles of the prenatal GCR brains have been chronicled across its entire gestational period. Brains of embryos/foetuses were harvested for gross morphological descriptions and then processed using immunofluorescence biomarkers to determine the pattern, onset, duration and peak of neurogenesis (Pax6, Tbr1, Tbr2, NF, HuCD, MAP2) and the onset and peak of glial cell expressions and myelination in the prenatal GCR. The outcome of these research efforts has shown unique neuroanatomical expressions and networks amongst Africa’s rich biodiversity. It is hopeful that continuous effort in this regard will provide sufficient basic research data on neural developments and cellular neuroanatomy with subsequent translational consequences.
electron microscopy coverage
13 items