Latest

SeminarNeuroscience

Organization of thalamic networks and mechanisms of dysfunction in schizophrenia and autism

Vasileios Zikopoulos
Boston University
Nov 3, 2025

Thalamic networks, at the core of thalamocortical and thalamosubcortical communications, underlie processes of perception, attention, memory, emotions, and the sleep-wake cycle, and are disrupted in mental disorders, including schizophrenia and autism. However, the underlying mechanisms of pathology are unknown. I will present novel evidence on key organizational principles, structural, and molecular features of thalamocortical networks, as well as critical thalamic pathway interactions that are likely affected in disorders. This data can facilitate modeling typical and abnormal brain function and can provide the foundation to understand heterogeneous disruption of these networks in sleep disorders, attention deficits, and cognitive and affective impairments in schizophrenia and autism, with important implications for the design of targeted therapeutic interventions

SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Aug 1, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 13, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Digital Minds: Brain Development in the Age of Technology

Eva Telzer
Winston National Center on Technology Use, Brain and Psychological Development
Feb 17, 2025

Digital Minds: Brain Development in the Age of Technology examines how our increasingly connected world shapes mental and cognitive health. From screen time and social media to virtual interactions, this seminar delves into the latest research on how technology influences brain development, relationships, and emotional well-being. Join us to explore strategies for harnessing technology's benefits while mitigating its potential challenges, empowering you to thrive in a digital age.

SeminarNeuroscience

Circuit Mechanisms of Remote Memory

Lauren DeNardo, PhD
Department of Physiology, David Geffen School of Medicine, UCLA
Feb 11, 2025

Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.

SeminarNeuroscience

Neural mechanisms governing the learning and execution of avoidance behavior

Mario Penzo
National Institute of Mental Health, Bethesda, USA
Jun 19, 2024

The nervous system orchestrates adaptive behaviors by intricately coordinating responses to internal cues and environmental stimuli. This involves integrating sensory input, managing competing motivational states, and drawing on past experiences to anticipate future outcomes. While traditional models attribute this complexity to interactions between the mesocorticolimbic system and hypothalamic centers, the specific nodes of integration have remained elusive. Recent research, including our own, sheds light on the midline thalamus's overlooked role in this process. We propose that the midline thalamus integrates internal states with memory and emotional signals to guide adaptive behaviors. Our investigations into midline thalamic neuronal circuits have provided crucial insights into the neural mechanisms behind flexibility and adaptability. Understanding these processes is essential for deciphering human behavior and conditions marked by impaired motivation and emotional processing. Our research aims to contribute to this understanding, paving the way for targeted interventions and therapies to address such impairments.

SeminarNeuroscience

Modeling idiosyncratic evaluation of faces

Alexander Todorov
University of Chicago
Mar 26, 2024
SeminarNeuroscience

Piecing together the puzzle of emotional consciousness

Tahnée Engelen
Ecole Normale Supérieure
Dec 9, 2023

Conscious emotional experiences are very rich in their nature, and can encompass anything ranging from the most intense panic when facing immediate threat, to the overwhelming love felt when meeting your newborn. It is then no surprise that capturing all aspects of emotional consciousness, such as intensity, valence, and bodily responses, into one theory has become the topic of much debate. Key questions in the field concern how we can actually measure emotions and which type of experiments can help us distill the neural correlates of emotional consciousness. In this talk I will give a brief overview of theories of emotional consciousness and where they disagree, after which I will dive into the evidence proposed to support these theories. Along the way I will discuss to what extent studying emotional consciousness is ‘special’ and will suggest several tools and experimental contrasts we have at our disposal to further our understanding on this intriguing topic.

SeminarNeuroscience

Vocal emotion perception at millisecond speed

Ana Pinehiro
University of Lisbon
Oct 17, 2023

The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.

SeminarNeuroscience

Freeze or flee ? New insights from rodent models of autism

Sumantra “Shona” Chattarji
Director, CHINTA, TCG Centres for Research and Education in Science & Technology, Kolkata, India & Visiting Professor, Simons Initiative for the Developing Brain, University of Edinburgh, UK
Jun 22, 2023

Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 22, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 21, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscience

Studies on the role of relevance appraisal in affect elicitation

Assaf Kron
University of Haifa, Israel
Jun 20, 2023

A fundamental question in affective sciences is how the human mind decides if, and in what intensity, to elicit an affective response. Appraisal theories assume that preceding the affective response, there is an evaluation stage in which dimensions of an event are being appraised. Common to most appraisal theories is the assumption that the evaluation phase involves the assessment of the stimulus’ relevance to the perceiver’s well-being. In this talk, I first discuss conceptual and methodological challenges in investigating relevance appraisal. Next, I present two lines of experiments that ask how the human mind uses information about objective and subjective probabilities in the decision about the intensity of the emotional response and how these are affected by the valence of the event. The potential contribution of the results to appraisal theory is discussed.

SeminarNeuroscienceRecording

Targeting Maladaptive Emotional Memories to Treat Mental Health Disorders: Insights from Rodent Models

Amy Milton
Department of Psychology, University of Cambridge
May 9, 2023

Maladaptive emotional memories contribute to the persistence of numerous mental health disorders, including post-traumatic stress disorder (PTSD), drug addiction and obsessive-compulsive disorder (OCD). Using rodent behavioural models of the psychological processes relevant to these disorders, it is possible to identify potential treatment targets for the development of new therapies, including those based upon disrupting the reconsolidation of maladaptive emotional memories. Using examples from rodent models relevant to multiple mental health disorders, this talk will consider some of the opportunities and challenges that this approach provides.

SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 12, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscienceRecording

Integrative Neuromodulation: from biomarker identification to optimizing neuromodulation

Valerie Voon
Department of Psychiatry, University of Cambridge
Mar 7, 2023

Why do we make decisions impulsively blinded in an emotionally rash moment? Or caught in the same repetitive suboptimal loop, avoiding fears or rushing headlong towards illusory rewards? These cognitive constructs underlying self-control and compulsive behaviours and their influence by emotion or incentives are relevant dimensionally across healthy individuals and hijacked across disorders of addiction, compulsivity and mood. My lab focuses on identifying theory-driven modifiable biomarkers focusing on these cognitive constructs with the ultimate goal to optimize and develop novel means of neuromodulation. Here I will provide a few examples of my group’s recent work to illustrate this approach. I describe a series of recent studies on intracranial physiology and acute stimulation focusing on risk taking and emotional processing. This talk highlights the subthalamic nucleus, a common target for deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder. I further describe recent translational work in non-invasive neuromodulation. Together these examples illustrate the approach of the lab highlighting modifiable biomarkers and optimizing neuromodulation.

SeminarNeuroscienceRecording

Does subjective time interact with the heart rate?

Saeedeh Sadegh
Cornell University, New York
Jan 25, 2023

Decades of research have investigated the relationship between perception of time and heart rate with often mixed results. In search of such a relationship, I will present my far journey between two projects: from time perception in the realistic VR experience of crowded subway trips in the order of minutes (project 1); to the perceived duration of sub-second white noise tones (project 2). Heart rate had multiple concurrent relationships with subjective temporal distortions for the sub-second tones, while the effects were lacking or weak for the supra-minute subway trips. What does the heart have to do with sub-second time perception? We addressed this question with a cardiac drift-diffusion model, demonstrating the sensory accumulation of temporal evidence as a function of heart rate.

SeminarNeuroscienceRecording

Social attention & emotion: invasive neurophysiology & white matter pathway studies

Aina Puce
Indiana University
Dec 20, 2022
SeminarNeuroscience

Two sides of emotion expressions: Readouts and Regulators

Nadine Gogolla
Max Planck Institute for Biological Intelligence, Munich
Dec 15, 2022
SeminarNeuroscienceRecording

CNStalk: Involvement of the cerebellum in motor and emotional learning

Dagmar Timmann
Sep 29, 2022
SeminarNeuroscience

Ebselen: a lithium-mimetic without lithium side-effects?

Beata R. Godlewska
Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
Jul 1, 2022

Development of new medications for mental health conditions is a pressing need given the high proportion of people not responding to available treatments. We hope that presenting ebselen to a wider audience will inspire further studies on this promising agent with a benign side-effects profile. Laboratory research, animal research and human studies suggest that ebselen shares many features with the mood stabilising drug lithium, creating a promise of a drug that would have a similar clinical effect but without lithium’s troublesome side-effect profile and toxicity. Both drugs have a common biological target, inositol monophosphatase, whose inhibition is thought key to lithium’s therapeutic effect. Both drugs have neuroprotective action and reduce oxidative stress. In animal studies, ebselen affected neurotransmitters involved in the development of mental health symptoms, and in particular, produced effects of serotonin function very similar to lithium. Both ebselen and lithium share behavioural effects: antidepressant-like effects in rodent models of depression and decrease in behavioural impulsivity, a property associated with lithium's anti-suicidal action. Human neuropsychological studies support an antidepressant profile for ebselen based on its positive impact on emotional processing and reward seeking. Our group currently is exploring ebselen’s effects in patients with mood disorders. A completed ‘add-on’ clinical trial in mania showed ebselen’s superiority over placebo after three weeks of treatment. Our ongoing experimental research explores ebselen’s antidepressant profile in patients with treatment resistant depression. If successful, this will lead to a clinical trial of ebselen as an antidepressant augmentation agent, similar to lithium.

SeminarNeuroscienceRecording

Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)

Sarah Garfinkel
Institute of Cognitive Neuroscience, UCL
May 24, 2022

Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.

SeminarNeuroscience

Faking emotions and a therapeutic role for robots and chatbots: Ethics of using AI in psychotherapy

Bipin Indurkhya
Cognitive Science Department, Jagiellonian University, Kraków
May 19, 2022

In recent years, there has been a proliferation of social robots and chatbots that are designed so that users make an emotional attachment with them. This talk will start by presenting the first such chatbot, a program called Eliza designed by Joseph Weizenbaum in the mid 1960s. Then we will look at some recent robots and chatbots with Eliza-like interfaces and examine their benefits as well as various ethical issues raised by deploying such systems.

SeminarNeuroscience

Neural mechanisms for memory and emotional processing during sleep

Gabrielle Girardeau
INSERM, Institut du Fer à Moulin, Paris, France
May 19, 2022
SeminarNeuroscience

Remembering Immunity, Central regulation of peripheral immune processes

Asya Rolls
Technion, Israel Institute of Technology
May 2, 2022

Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.

SeminarNeuroscience

Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2

Heather Snell
Albert Einstein Medical College
Apr 27, 2022

Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.

SeminarNeuroscienceRecording

Brain and behavioural impacts of early life adversity

Jeff Dalley
Department of Psychology, University of Cambridge
Apr 26, 2022

Abuse, neglect, and other forms of uncontrollable stress during childhood and early adolescence can lead to adverse outcomes later in life, including especially perturbations in the regulation of mood and emotional states, and specifically anxiety disorders and depression. However, stress experiences vary from one individual to the next, meaning that causal relationships and mechanistic accounts are often difficult to establish in humans. This interdisciplinary talk considers the value of research in experimental animals where stressor experiences can be tightly controlled and detailed investigations of molecular, cellular, and circuit-level mechanisms can be carried out. The talk will focus on the widely used repeated maternal separation procedure in rats where rat offspring are repeatedly separated from maternal care during early postnatal life. This early life stress has remarkably persistent effects on behaviour with a general recognition that maternally-deprived animals are susceptible to depressive-like phenotypes. The validity of this conclusion will be critically appraised with convergent insights from a recent longitudinal study in maternally separated rats involving translational brain imaging, transcriptomics, and behavioural assessment.

SeminarNeuroscienceRecording

Brain-body interactions that modulate fear

Alexandra Klein
Kheirbeck lab, UCSF
Mar 30, 2022

In most animals including in humans, emotions occur together with changes in the body, such as variations in breathing or heart rate, sweaty palms, or facial expressions. It has been suggested that this interoceptive information acts as a feedback signal to the brain, enabling adaptive modulation of emotions that is essential for survival. As such, fear, one of our basic emotions, must be kept in a functional balance to minimize risk-taking while allowing for the pursuit of essential needs. However, the neural mechanisms underlying this adaptive modulation of fear remain poorly understood. In this talk, I want to present and discuss the data from my PhD work where we uncover a crucial role for the interoceptive insular cortex in detecting changes in heart rate to maintain an equilibrium between the extinction and maintenance of fear memories in mice.

SeminarNeuroscience

Brain-visceral interactions in perception, cognition, emotion and consciousness

Catherine Tallon Baudry
ESP, Inserm Paris, France
Mar 29, 2022
SeminarNeuroscience

fMRI of cognitive reappraisal, acceptance, and suppression emotion regulation strategies in basic and clinically applied contexts

Philippe Goldin
University of California, Davis, USA
Mar 16, 2022

The ability to effectively regulate emotions is a fundamental skill related to physical and psychological health. In this talk, I will present behavioral and fMRI data from several different studies that examined cognitive reappraisal, acceptance, and suppression emotion regulation strategies in healthy controls participants and in the context of randomized trials of cognitive behavioral therapy, mindfulness- based stress reduction, and aerobic exercise as interventions for adults with anxiety disorders. We will also examine the implementation of different types of functional connectivity analytic approaches to probe intervention-related brain mechanism changes.

SeminarNeuroscience

Do heart rate oscillations enhance function of emotion networks in the brain

Mara Mather
USC Davis School of Gerontology
Feb 22, 2022
SeminarNeuroscienceRecording

Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate

Angela Roberts
Department of Physiology, Development and Neuroscience, University of Cambridge
Feb 15, 2022

Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.

SeminarNeuroscience

Acting on our instincts: understanding emotional decision-making

Cornelius Gross
Epigenetics & Neurobiology Unit European Molecular Biology Laboratory (EMBL), Rome, Italy
Feb 14, 2022
SeminarNeuroscience

Multimodal framework and fusion of EEG, graph theory and sentiment analysis for the prediction and interpretation of consumer decision

Veeky Baths
Cognitive Neuroscience Lab (Bits Pilani Goa Campus)
Feb 3, 2022

The application of neuroimaging methods to marketing has recently gained lots of attention. In analyzing consumer behaviors, the inclusion of neuroimaging tools and methods is improving our understanding of consumer’s preferences. Human emotions play a significant role in decision making and critical thinking. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition.Affective neuroscience research can help in detecting emotions when a consumer responds to an advertisement. Successful emotional elicitation is a verification of the effectiveness of an advertisement. EEG provides a cost effective alternative to measure advertisement effectiveness while eliminating several drawbacks of the existing market research tools which depend on self-reporting. We used Graph theoretical principles to differentiate brain connectivity graphs when a consumer likes a logo versus a consumer disliking a logo. The fusion of EEG and sentiment analysis can be a real game changer and this combination has the power and potential to provide innovative tools for market research.

SeminarNeuroscience

Keeping the balance- A role for the insular cortex in emotion homeostasis

Nadine Gogolla
Max Planck Institute, Munich, Germany
Jan 31, 2022
SeminarNeuroscience

Astrocytes and oxytocin interaction regulates amygdala neuronal network activity and related behaviors”

Alexandre Charlet
Centre National de la Recherche Scientifique, University of Strasbourg and Institute of Cellular and Integrative Neuroscience, Strasbourg, France
Dec 9, 2021

Oxytocin orchestrates social and emotional behaviors through modulation of neural circuits in brain structures such as the central amygdala (CeA). In this structure, the release of oxytocin modulates inhibitory circuits and subsequently suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function approaches and pharmacology, we demonstrate that oxytocin signaling in the central amygdala relies on a subpopulation of astrocytes that represent a prerequisite for proper function of CeA circuits and adequate behavioral responses, both in rats and mice. Our work identifies astrocytes as crucial cellular intermediaries of oxytocinergic modulation in emotional behaviors related to anxiety or positive reinforcement. To our knowledge, this is the first demonstration of a direct role of astrocytes in oxytocin signaling and challenges the long-held dogma that oxytocin signaling occurs exclusively via direct action on neurons in the central nervous system.

SeminarNeuroscience

A transdiagnostic data-driven study of children’s behaviour and the functional connectome

Jonathan Jones
Universiy of Cambridge, MRC CBU
Nov 24, 2021

Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)

SeminarNeuroscience

“Mind reading” with brain scanners: Facts versus science fiction

John-Dylan Haynes
Charité - Universitätsmedizin, Berlin; Center for Advanced Neuroimaging; Bernstein Center for Computational Neuroscience
Nov 22, 2021

Every thought is associated with a unique pattern of brain activity. Thus, in principle, it should be possible to use these activity patterns as "brain fingerprints" for different thoughts and to read out what a person is thinking based on their brain activity alone. Indeed, using machine learning considerable progress has been made in such "brainreading" in recent years. It is now possible to decode which image a person is viewing, which film sequence they are watching, which emotional state they are in or which intentions they hold in mind. This talk will provide an overview of the current state of the art in brain reading. It will also highlight the main challenges and limitations of this research field. For example, mathematical models are needed to cope with the high dimensionality of potential mental states. Furthermore, the ethical concerns raised by (often premature) commercial applications of brain reading will also be discussed.

SeminarNeuroscience

CrossTalk: Conversations at the Intersection of Science and Art

Anjan Chatterjee
Penn Center for Neuroaesthetics
Oct 15, 2021

Anjan Chatterjee is a Professor of Neurology, Psychology, and Architecture and the founding Director of the Penn Center for Neuroaesthetics. His research explores the field of neuroaesthetics: how our brain experiences and responds to art. Lucas Kelly is a renowned visual artist, with work featured across several solo and group exhibitions, most notably in the survey of abstract painting “The Painted World” at PS1 Museum of Modern Art. As the inaugural Artist in Residence for the Penn Center for Neuroaesthetics, Lucas has collaborated with Anjan on a forthcoming exhibition, considering the emotions involved in aesthetic engagement informed by research. This event will feature a moderated conversation between Anjan and Lucas, discussing topics at the intersection of neuroscience and experience of visual art.

SeminarNeuroscienceRecording

Music training effects on multisensory and cross-sensory transfer processing: from cross-sectional to RCT studies

Karin Petrini
University of Bath
Sep 9, 2021
SeminarNeuroscienceRecording

Active sleep in flies: the dawn of consciousness

Bruno van Swinderen
University of Queensland
Jul 19, 2021

The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.

SeminarNeuroscience

Untitled Seminar

ANA MARIJA JAKŠIĆ, NADINE GOGOLLA
EPFL, MPG
Jul 9, 2021
SeminarNeuroscience

Multi-scale synaptic analysis for psychiatric/emotional disorders

Akiko Hayashi-Takagi
RIKEN CBS
Jul 1, 2021

Dysregulation of emotional processing and its integration with cognitive functions are central features of many mental/emotional disorders associated both with externalizing problems (aggressive, antisocial behaviors) and internalizing problems (anxiety, depression). As Dr. Joseph LeDoux, our invited speaker of this program, wrote in his famous book “Synaptic self: How Our Brains Become Who We Are”—the brain’s synapses—are the channels through which we think, act, imagine, feel, and remember. Synapses encode the essence of personality, enabling each of us to function as a distinctive, integrated individual from moment to moment. Thus, exploring the functioning of synapses leads to the understanding of the mechanism of (patho)physiological function of our brain. In this context, we have investigated the pathophysiology of psychiatric disorders, with particular emphasis on the synaptic function of model mice of various psychiatric disorders such as schizophrenia, autism, depression, and PTSD. Our current interest is how synaptic inputs are integrated to generate the action potential. Because the spatiotemporal organization of neuronal firing is crucial for information processing, but how thousands of inputs to the dendritic spines drive the firing remains a central question in neuroscience. We identified a distinct pattern of synaptic integration in the disease-related models, in which extra-large (XL) spines generate NMDA spikes within these spines, which was sufficient to drive neuronal firing. We experimentally and theoretically observed that XL spines negatively correlated with working memory. Our work offers a whole new concept for dendritic computation and network dynamics, and the understanding of psychiatric research will be greatly reconsidered. The second half of my talk is the development of a novel synaptic tool. Because, no matter how beautifully we can illuminate the spine morphology and how accurately we can quantify the synaptic integration, the links between synapse and brain function remain correlational. In order to challenge the causal relationship between synapse and brain function, we established AS-PaRac1, which is unique not only because it can specifically label and manipulate the recently potentiated dendritic spine (Hayashi-Takagi et al, 2015, Nature). With use of AS-PaRac1, we developed an activity-dependent simultaneous labeling of the presynaptic bouton and the potentiated spines to establish “functional connectomics” in a synaptic resolution. When we apply this new imaging method for PTSD model mice, we identified a completely new functional neural circuit of brain region A→B→C with a very strong S/N in the PTSD model mice. This novel tool of “functional connectomics” and its photo-manipulation could open up new areas of emotional/psychiatric research, and by extension, shed light on the neural networks that determine who we are.

SeminarNeuroscience

Estimation of current and future physiological states in insular cortex

Mark Andermann
Harvard University
Jun 29, 2021

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. I will describe our recent work imaging mouse InsCtx neurons during two physiological deficiency states – hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis, but not changes in behavior. Accordingly, while artificial induction of hunger/thirst in sated mice via activation of specific hypothalamic neurons (AgRP/SFOGLUT) restored cue-evoked food/water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger/thirst, food/water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger/thirst, food/water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory inputs regarding current physiological state with hypothalamus-gated amygdala inputs signaling upcoming ingestion of food/water, to compute a prediction of future physiological state.

SeminarNeuroscience

Contrasting neuronal circuits driving reactive and cognitive fear

Mario Penzo
NIMH
Jun 28, 2021

The last decade in the field of neuroscience has been marked by intense debate on the meaning of the term fear. Whereas some have argued that fear (as well as other emotions) relies on cognitive capacities that are unique to humans, others view it as a negative state constructed from essential building blocks. This latter definition posits that fear states are associated with varying readouts that one could consider to be parallel processes or serial events tied to a specific hierarchy. Within this framework, innate defensive behaviors are considered to be common displays of fear states that lie under the control of hard-wired brain circuits. As a general rule, these defensive behaviors can be classified as either reactive or cognitive based on a thread imminence continuum. However, while evidence of the neuronal circuits that lead to these divergent behavioral strategies has accrued over the last decades, most literature has considered these responses in isolation. As a result, important misconceptions have arisen regarding how fear circuits are distributed in the brain and the contribution of specific nodes within these circuits to defensive behaviors. To mitigate the status quo, I will conduct a systematic comparison of brain circuits driving the expression of freezing and active avoidance behavior, which I will use as well-studied proxies of reactive and cognitive fear, respectively. In addition, I propose that by integrating associative information with interoceptive and exteroceptive signals the central nucleus of the amygdala plays a crucial role in biasing the selection of defensive behaviors.

SeminarNeuroscienceRecording

A role for cognitive maps in metaphors and analogy?

Roberto Bottini
University of Trento
Jun 24, 2021

In human and non-human animals, conceptual knowledge is partially organized according to low-dimensional geometries that rely on brain structures and computations involved in spatial representations. Recently, two separate lines of research have investigated cognitive maps, that are associated with the hippocampal formation and are similar to world-centered representations of the environment, and image spaces, that are associated with the parietal cortex and are similar to self-centered spatial relationships. I will suggest that cognitive maps and image spaces may be two manifestations of a more general propensity of the mind to create low-dimensional internal models, and may play a role in analogical reasoning and metaphorical thinking. Finally, I will show some data suggesting that the metaphorical relationship between colors and emotions can be accounted for by the structural alignment of low-dimensional conceptual spaces.

SeminarNeuroscienceRecording

Structures in space and time - Hierarchical network dynamics in the amygdala

Yael Bitterman
Luethi lab, FMI for Biomedical Research
Jun 16, 2021

In addition to its role in the learning and expression of conditioned behavior, the amygdala has long been implicated in the regulation of persistent states, such as anxiety and drive. Yet, it is not evident what projections of the neuronal activity capture the functional role of the network across such different timescales, specifically when behavior and neuronal space are complex and high-dimensional. We applied a data-driven dynamical approach for the analysis of calcium imaging data from the basolateral amygdala, collected while mice performed complex, self-paced behaviors, including spatial exploration, free social interaction, and goal directed actions. The seemingly complex network dynamics was effectively described by a hierarchical, modular structure, that corresponded to behavior on multiple timescales. Our results describe the response of the network activity to perturbations along different dimensions and the interplay between slow, state-like representation and the fast processing of specific events and actions schemes. We suggest hierarchical dynamical models offer a unified framework to capture the involvement of the amygdala in transitions between persistent states underlying such different functions as sensory associative learning, action selection and emotional processing. * Work done in collaboration with Jan Gründemann, Sol Fustinana, Alejandro Tsai and Julien Courtin (@theLüthiLab)

SeminarNeuroscience

Neural mechanisms for memory and emotional processing during sleep

Gabrielle Girardeau
INSERM
Jun 9, 2021

The hippocampus and the amygdala are two structures required for emotional memory. While the hippocampus encodes the contextual part of the memory, the amygdala processes its emotional valence. During Non-REM sleep, the hippocampus displays high frequency oscillations called “ripples”. Our early work shows that the suppression of ripples during sleep impairs performance on a spatial task, underlying their crucial role in memory consolidation. We more recently showed that the joint amygdala-hippocampus activity linked to aversive learning is reinstated during the following Non-REM sleep epochs, specifically during ripples. This mechanism potentially sustains the consolidation of aversive associative memories during Non REM sleep. On the other hand, REM sleep is associated with regular 8 Hz theta oscillations, and is believed to play a role in emotional processing. A crucial, initial step in understanding this role is to unravel sleep dynamics related to REM sleep in the hippocampus-amygdala network

ePosterNeuroscience

Leveraging computational and animal models of vision to probe atypical emotion recognition in autism

Hamid Ramezanpour & Kohitij Kar

COSYNE 2023

ePosterNeuroscience

Assessing the effects of mindful breathing on learning and emotions in primary school students

Astrid Schmied, Jack Fogarty

FENS Forum 2024

ePosterNeuroscience

The association of emotion dysregulation in the occurrence of depression and suicidal behaviors in a sub-Saharan sample of university students

Bernice Nderitu, Michael Kihara, Dana Basnight-Brown

FENS Forum 2024

ePosterNeuroscience

Behavioral correlates of parent-infant dyadic emotional synchrony and association with child socioemotional development

Andréane Lavallée, Jeremiah Q. Manning, Esther Greeman, Ruiyang Xu, Nicole Shearman, Elena Arduin, Mauricio Espinoza, Dani Dumitriu

FENS Forum 2024

ePosterNeuroscience

Cerebellar neuronal activity during emotional control and the role of cerebellar-mPFC pathway in fear learning

Camilla Ciapponi, Lisa Mapelli, Egidio D'Angelo

FENS Forum 2024

ePosterNeuroscience

Cerebellum and emotions: A journey from evidence to computational modeling and simulation

Dianela Andreina Osorio Becerra, Dimitri Rodarie, Alessio Marta, Claudia Casellato, Egidio D'Angelo

FENS Forum 2024

ePosterNeuroscience

Disentangling emotional memories in ventral hippocampal circuits

Thomas Forro, Anastasija Milentijevic, Thomas Nevian, Stéphane Ciocchi

FENS Forum 2024

ePosterNeuroscience

Dorsal-ventral hippocampal coding of emotional experiences

Azul Silva, Juan Facunda Morici, Avinash Kumar Ranjan, Bryan da Costa Souza, Gabrielle Girardeau

FENS Forum 2024

ePosterNeuroscience

Dynamical update of emotional value-based representations in prefrontal networks

Anass El Azraoui, Evan Harrell, Tatiana Dupak, Frederic Lanore, Yann Humeau, Cyril Herry

FENS Forum 2024

ePosterNeuroscience

Early offspring separation causes increased emotionality and long-term changes in the brain CRF system of lactating rats

Sara Sheibani Tezerji, Luisa Demarchi, Oliver j. Bosch

FENS Forum 2024

ePosterNeuroscience

Effects of parenting behaviors on children’s and young adults' emotion regulatory brain structure

Mirjam Habegger, Elena Federici, Plamina Dimanova, Réka Borbás, Denis Ribeaud, Manuel Eisner, Todd Hare, Nora Maria Raschle

FENS Forum 2024

ePosterNeuroscience

Emotion regulation across dimensions of emotional response: A multimodal comparison of emotion regulation strategies

Lara Oblak, Andraž Matkovič, Aleksij Kraljič, Gaja Zager Kocjan, Grega Repovš

FENS Forum 2024

ePosterNeuroscience

Emotional and blood-brain barrier alterations precede cognitive dysfunction in a mouse model of Alzheimer's disease

Guillaume Benhora-Chabeaux, Damien Mor, Lidia Cabeza, Thibaut Nicod, Bahrie Ramadan, Christophe Houdayer, Adeline Etievant, Fanchon Bourasset

FENS Forum 2024

ePosterNeuroscience

Emotional feature representation in prefrontal ensemble dynamics

FENS Forum 2024

ePosterNeuroscience

Emotional contagion and helping behavior: Learning to be good recruits cell subpopulation in the dorsal hippocampus in mice

Moisés dos Santos Corrêa, Charitha Omprakash, Esmeralda Tafani, Ada Braun, Melissa Lowitch, Anne Albrecht, Pavol Bauer, Sanja Mikulovic

FENS Forum 2024

ePosterNeuroscience

Emotions modulation on interbrain dynamics

Federica Antonelli, Fabrizio Bernardi, Francesca Managò, Francesco Papaleo

FENS Forum 2024

ePosterNeuroscience

Emotional memory reactivation supports flexible sleep strategies

Menghan Yu, Bo Lei, Yi Zhong

FENS Forum 2024

ePosterNeuroscience

Exploring the emotional side of ticklishness: Insights from insular neurons

Sarah Dagher, Shimpei Ishiyama

FENS Forum 2024

ePosterNeuroscience

High-resolution fMRI reveals an extensive cortical network responding to conspecific emotional vocalisations in macaques

Mathilda Froesel, Qi Zhu, Haiyan Wang, Marc Hauser, Suliann Ben Hamed, Wim Vanduffel

FENS Forum 2024

ePosterNeuroscience

Impact of perinatal exposure to maternal western diet on offspring socioemotional behavior

Jerome Becker, Pauline Monguillon, Agathe Brugoux, Mélanie Morin, Enola Roussin, Sylviane Marouillat, Patrick Vourch’, Eduardo Gascon, Laetitia Davidovic, Julie Le Merrer

FENS Forum 2024

ePosterNeuroscience

Impact of olfactory food ingredients on emotional and digestive state

Clémence Viguier, Marie Bailly, Julie Thevenin, Laura Guiraud, Jean-paul Motta, Marion Allaoua, Virginie Noirot, Pierre Etienne, Nathalie Vergnolle, Bruno Guiard, Lionel Moulédous

FENS Forum 2024

ePosterNeuroscience

The inside-out of emotion processing: Evaluating children and adults’ neural correlates from a novel fMRI movie-watching paradigm

Sofia Scatolin, Elena Federici, Plamina Dimanova, Réka Borbás, Mirjam Habegger, Nora Maria Raschle

FENS Forum 2024

ePosterNeuroscience

Integration of autonomic readouts to study neural emotional states in freely moving mice

Jérémy Signoret-Genest, Nina Schukraft, Sara L. Reis, Philip Tovote

FENS Forum 2024

ePosterNeuroscience

Methyldonor supplementation protects against early-life stress induced emotional dysregulation via modulation of hypothalamic DNA methylation

Natalia Schilder, Kitty Reemst, Veronica Begni, Moshe Szyf, David Cheishvili, Marco Riva, Aniko Korosi

FENS Forum 2024

ePosterNeuroscience

Modeling pain sensitivity in healthy individuals: The influence of emotional traits and resilience

Ombretta Caspani, Niko Möller-Grell, Genser Bernd, Jan Vollert, Finnerup Nanna, Zahra Nochi, Hatice Tankisi, Andrea Truini, Caterina Leone, Andre Mouraux, Lieve Filbrich, Louisien Lebrun, Vishvarani Wanigasekera, Sophie Clarke, Irene Tracey, Luis Garcia-Larrea, Rolf-Detlef Treede

FENS Forum 2024

ePosterNeuroscience

Neural dynamics of processing natural and digital emotional vocalizations

Christine Skjegstad, Sascha Frühholz

FENS Forum 2024

ePosterNeuroscience

Neurocognitive profiles of childhood maltreatment subtypes: Understanding the effects of childhood emotional abuse on the adult social brain

Stephanie Spengler, Christine Heim

FENS Forum 2024

ePosterNeuroscience

Non-invasive vagus nerve stimulation normalizes psychoemotional state shifting “sympatho-vagal balance”

Serhii Tukaiev, Yaroslav Gachshenko, Nickolai Vysokov, Dauren Toleukhanov, Ivan Brak, Gaukhar Datkhabayeva

FENS Forum 2024

ePosterNeuroscience

The parabrachial nucleus recruits ventral tegmental area to convey negative emotions and disengage instrumental food seeking

Syun-Ruei Lee, Hau-Jie Yau

FENS Forum 2024

ePosterNeuroscience

Preconscious fear-like stimuli affect overt and covert emotional conscious processing

Sergio Frumento, Alberto Greco, Alejandro Luis Callara, Andrea Baldini, Enzo Pasquale Scilingo, Danilo Menicucci, Angelo Gemignani

FENS Forum 2024

ePosterNeuroscience

Processing of cardiac signals in the insular cortex is necessary for emotion state coding

Meryl Malezieux, Jeong Yeongseok, Eunjae Cho, Andrea Ressle, Bianca Schmid, Nadine Gogolla

FENS Forum 2024

ePosterNeuroscience

Resolving decision-making during emotional conflicts by ventral hippocampal circuits

Carlo Cerquetella, Stéphane Ciocchi

FENS Forum 2024

ePosterNeuroscience

Rodent propionic acid model of autism: Emotional and ultrastructural changes in rat amygdala

Pikria Khomasuridze, Giorgi Lobzhanidze, Nadezhda Japaridze, Mzia Zhvania, Fuad Rzayev, Eldar Gasimov

FENS Forum 2024

ePosterNeuroscience

The role of the mean diffusivity of the amygdala in the perception of emotional faces in 8-month-old infants

Niloofar Hashempour, Jetro J. Tuulari, Harri Merisaari, John D. Lewis, Linnea Karlsson, Hasse Karlsson, Eeva-Leena Kataja

FENS Forum 2024

ePosterNeuroscience

Role of the NPS system in fear extinction: Sex differences in emotional regulation in mice

Marta Méndez-Couz, Kay Juengling

FENS Forum 2024

ePosterNeuroscience

Seeing is believing? Influences of political views and emotions on authenticity perception of photojournalistic pictures

Laurent Beaupoil, Beata Pacula-Leśniak, Tomasz Kulczycki, Michał Kuniecki

FENS Forum 2024

ePosterNeuroscience

Unmet emotional predictions linger in the lateral orbitofrontal cortex during rest

Gargi Majumdar, Fahd Yazin, Arpan Banerjee, Dipanjan Roy

FENS Forum 2024

ePosterNeuroscience

Joint neural-cognitive modelling of free recall: using the LPP to model emotional memory

Gwladys Léré

Neuromatch 5

emotion coverage

88 items

Seminar50
ePoster38
Domain spotlight

Explore how emotion research is advancing inside Neuro.

Visit domain