Latest

SeminarNeuroscienceRecording

Achieving Abstraction: Early Competence & the Role of the Learning Context

Caren Walker
University of California, San Diego
Jul 15, 2021

Children's emerging ability to acquire and apply relational same-different concepts is often cited as a defining feature of human cognition, providing the foundation for abstract thought. Yet, young learners often struggle to ignore irrelevant surface features to attend to structural similarity instead. I will argue that young children have--and retain--genuine relational concepts from a young age, but tend to neglect abstract similarity due to a learned bias to attend to objects and their properties. Critically, this account predicts that differences in the structure of children's environmental input should lead to differences in the type of hypotheses they privilege and apply. I will review empirical support for this proposal that has (1) evaluated the robustness of early competence in relational reasoning, (2) identified cross-cultural differences in relational and object bias, and (3) provided evidence that contextual factors play a causal role in relational reasoning. Together, these studies suggest that the development of abstract thought may be more malleable and context-sensitive than initially believed.

SeminarNeuroscienceRecording

Abstraction and Analogy in Natural and Artificial Intelligence

Lindsey Richland
University of California, Irvine
Oct 8, 2020

Learning by analogy is a powerful tool children’s developmental repertoire, as well as in educational contexts such as mathematics, where the key knowledge base involves building flexible schemas. However, noticing and learning from analogies develops over time and is cognitively resource intensive. I review studies that provide insight into the relationship between mechanisms driving children’s developing analogy skills, highlighting environmental inputs (parent talk and prior experiences priming attention to relations) and neuro-cognitive factors (Executive Functions and brain injury). I then note implications for mathematics learning, reviewing experimental findings that show analogy can improve learning, but also that both individual differences in EFs and environmental factors that reduce available EFs such as performance pressure can predict student learning.

environmental input coverage

2 items

Seminar2
Domain spotlight

Explore how environmental input research is advancing inside Neuro.

Visit domain