Expertise
expertise
Latest
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
How the brain barriers ensure CNSimmune privilege”
Britta Engelhard’s research is devoted to understanding thefunction of the different brain barriers in regulating CNS immunesurveillance and how their impaired function contributes toneuroinflammatory diseases such as Multiple Sclerosis (MS) orAlzheimer’s disease (AD). Her laboratory combines expertise invascular biology, neuroimmunology and live cell imaging and hasdeveloped sophisticated in vitro and in vivo approaches to studyimmune cell interactions with the brain barriers in health andneuroinflammation.
There’s more to timing than time: P-centers, beat bins and groove in musical microrhythm
How does the dynamic shape of a sound affect its perceived microtiming? In the TIME project, we studied basic aspects of musical microrhythm, exploring both stimulus features and the participants’ enculturated expertise via perception experiments, observational studies of how musicians produce particular microrhythms, and ethnographic studies of musicians’ descriptions of microrhythm. Collectively, we show that altering the microstructure of a sound (“what” the sound is) changes its perceived temporal location (“when” it occurs). Specifically, there are systematic effects of core acoustic factors (duration, attack) on perceived timing. Microrhythmic features in longer and more complex sounds can also give rise to different perceptions of the same sound. Our results shed light on conflicting results regarding the effect of microtiming on the “grooviness” of a rhythm.
Using Adversarial Collaboration to Harness Collective Intelligence
There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
A Toolkit to Succeed in Neuroscience in Africa - an IBRO-ALBA-WWN-SANS Webinar
Following up on last year's webinar - What it takes to succeed as a neuroscientist in Africa, this panel discussion aims at creating a guide to the skill set needed to be a neuroscientist in the African continent. Chairs and panelists will illustrate different areas of expertise as part of the "Toolkit" by matching them to real life experience and solutions that they had to find while building their career as scientists.
Lifelong Learning AI via neuro inspired solutions
AI embedded in real systems, such as in satellites, robots and other autonomous devices, must make fast, safe decisions even when the environment changes, or under limitations on the available power; to do so, such systems must be adaptive in real time. To date, edge computing has no real adaptivity – rather the AI must be trained in advance, typically on a large dataset with much computational power needed; once fielded, the AI is frozen: It is unable to use its experience to operate if environment proves outside its training or to improve its expertise; and worse, since datasets cannot cover all possible real-world situations, systems with such frozen intelligent control are likely to fail. Lifelong Learning is the cutting edge of artificial intelligence - encompassing computational methods that allow systems to learn in runtime and incorporate learning for application in new, unanticipated situations. Until recently, this sort of computation has been found exclusively in nature; thus, Lifelong Learning looks to nature, and in particular neuroscience, for its underlying principles and mechanisms and then translates them to this new technology. Our presentation will introduce a number of state-of-the-art approaches to achieve AI adaptive learning, including from the DARPA’s L2M program and subsequent developments. Many environments are affected by temporal changes, such as the time of day, week, season, etc. A way to create adaptive systems which are both small and robust is by making them aware of time and able to comprehend temporal patterns in the environment. We will describe our current research in temporal AI, while also considering power constraints.
‘New Possibilities & Opportunities @ CBD Single cell & Microfludics Expertise Unit’
Analogy and ethics: opportunities at the intersection
Analogy offers a new interpretation of a common concern in ethics: whether decision making includes or excludes a consideration of moral issues. This is often discussed as the moral awareness of decision makers and considered a motivational concern. The possible new interpretation is that moral awareness is in part a matter of expertise. Some failures of moral awareness can then be understood as stemming from novicehood. Studies of analogical transfer are consistent with the possibility that moral awareness is in part a matter of expertise, that as a result motivation is less helpful than some prior theorizing would predict, and that many adults are not as expert in the domain of ethics as one might hope. The possibility of expert knowledge of ethical principles leads to new questions and opportunities.
British Neuroscience Association (BNA) Festival - 2021
In April 2021, in partnership with the UK Dementia Research Institute, the British Neuroscience Association will host its fifth Festival of Neuroscience. Due to the ongoing uncertainty around COVID19, our 2021 event will be the first ever online Festival of Neuroscience. Although we are sorry to miss meeting in person, we're excited to create a whole new Festival experience! The ambition and scope of the BNA Festivals make them unparalleled across neuroscience. Being online will not change how the BNA2021 event will: - bring together multiple organisations with an interest in brain research at a single, shared event, creating a novel, multi-organisation forum featuring all areas of fundamental research in neuroscience and psychology, from both academia and the commercial sector, plus clinical expertise in neurology and psychiatry. - include a programme of public events as well. Past Festivals have seen a rap performance about consciousness, lunchtime talks, sessions in schools, and much more.
Students to Professors: Inspiring NeurotechEU Women
The NeurotechEU student councils invites you to a special event on the occasion of the International Women's Day. 15 different speakers from very different backgrounds, seniority and expertise will share their experience on women in science, from students, to professeurs, to researchers, to the European Commission, discover their very unique insights.
CURE-ND Neurotechnology Workshop - Innovative models of neurodegenerative diseases
One of the major roadblocks to medical progress in the field of neurodegeneration is the absence of animal models that fully recapitulate features of the human diseases. Unprecedented opportunities to tackle this challenge are emerging e.g. from genome engineering and stem cell technologies, and there are intense efforts to develop models with a high translational value. Simultaneously, single-cell, multi-omics and optogenetics technologies now allow longitudinal, molecular and functional analysis of human disease processes in these models at high resolution. During this workshop, 12 experts will present recent progress in the field and discuss: - What are the most advanced disease models available to date? - Which aspects of the human disease do these accurately models, which ones do they fail to replicate? - How should models be validated? Against which reference, which standards? - What are currently the best methods to analyse these models? - What is the field still missing in terms of modelling, and of technologies to analyse disease models? CURE-ND stands for 'Catalysing a United Response in Europe to Neurodegenerative Diseases'. It is a new alliance between the German Center for Neurodegenerative Diseases (DZNE), the Paris Brain Institute (ICM), Mission Lucidity (ML, a partnership between imec, KU Leuven, UZ Leuven and VIB in Belgium) and the UK Dementia Research Institute (UK DRI). Together, these partners embrace a joint effort to accelerate the pace of scientific discovery and nurture breakthroughs in the field of neurodegenerative diseases. This Neurotechnology Workshop is the first in a series of joint events aiming at exchanging expertise, promoting scientific collaboration and building a strong community of neurodegeneration researchers in Europe and beyond.
The BHP Chronic Pain Health Integration Team: Helping those with chronic pain to access the support they need / A bit of a To and Fro with population pain science
Candy will provide an overview of Bristol Health Partners' Chronic Pain Health Integration Team which brings together clinicians, academics, patients and carers to focus on improving the lives of those with chronic pain and supporting those who provide chronic pain services or care. Tony will describe recent and ongoing studies that have been forward and reverse translating pain neuroscience from animal to human including functional imaging in patients, microneurography, industrial partnerships and trials of novel preventative approaches that are benefitting from the people, expertise and facilities available in Bristol and GW4.
The neural basis of human face identity recognition
The face is the primary source of information for recognizing the identity of people around us, but the neural basis of this astonishing ability remains largely unknown. In this presentation, I will define the fundamental problem of face identity recognition, arguing that there is a specific expertise of the human species at this function. I will then attempt to integrate a large corpus of observations from lesion studies, neuroimaging, human intracerebral recordings and stimulation into a coherent framework to shed light on the neural mechanisms of human face identity recognition.
Presynaptic plasticity in hippocampal circuits
Christophe Mulle is a cellular neurobiologist with expertise in electrophysiology of synaptic transmission and an international leader in studies on glutamate receptors and hippocampal synaptic plasticity. He was among the first to identify and characterize functional nicotinic receptors in the mammalian brain while working in the laboratory of Jean-Pierre Changeux at the Pasteur Institute. He then generated knock-out mice for KAR subunits at the Salk Institute in the laboratory of Steve Heinemann, which have proven to be instrumental for understanding the function of these elusive glutamate receptors in synaptic function and plasticity.
expertise coverage
17 items