Latest

SeminarNeuroscience

sensorimotor control, mouvement, touch, EEG

Marieva Vlachou
Institut des Sciences du Mouvement Etienne Jules Marey, Aix-Marseille Université/CNRS, France
Dec 19, 2025

Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.

SeminarNeuroscience

“Development and application of gaze control models for active perception”

Prof. Bert Shi
Professor of Electronic and Computer Engineering at the Hong Kong University of Science and Technology (HKUST)
Jun 12, 2025

Gaze shifts in humans serve to direct high-resolution vision provided by the fovea towards areas in the environment. Gaze can be considered a proxy for attention or indicator of the relative importance of different parts of the environment. In this talk, we discuss the development of generative models of human gaze in response to visual input. We discuss how such models can be learned, both using supervised learning and using implicit feedback as an agent interacts with the environment, the latter being more plausible in biological agents. We also discuss two ways such models can be used. First, they can be used to improve the performance of artificial autonomous systems, in applications such as autonomous navigation. Second, because these models are contingent on the human’s task, goals, and/or state in the context of the environment, observations of gaze can be used to infer information about user intent. This information can be used to improve human-machine and human robot interaction, by making interfaces more anticipative. We discuss example applications in gaze-typing, robotic tele-operation and human-robot interaction.

SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 5, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscience

Contentopic mapping and object dimensionality - a novel understanding on the organization of object knowledge

Jorge Almeida
University of Coimbra
Jan 28, 2025

Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. Here I put forth a novel understanding of how object knowledge is organized in the brain, by proposing that the organization of object knowledge follows key object-related dimensions, analogously to how sensory information is organized in the brain. Moreover, I will also put forth that this knowledge is topographically laid out in the cortical surface according to these object-related dimensions that code for different types of representational content – I call this contentopic mapping. I will show a combination of fMRI and behavioral data to support these hypotheses and present a principled way to explore the multidimensionality of object processing.

SeminarNeuroscience

SWEBAGS conference 2024: Shared network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease: From modulation of oscillatory cortex – basal ganglia communication to intelligent clinical brain computer interfaces

Wolf-Julian Neumann
Charité – Universitätsmedizin Berlin
Dec 5, 2024
SeminarNeuroscience

Screen Savers : Protecting adolescent mental health in a digital world

Amy Orben
University of Cambridge UK
Dec 3, 2024

In our rapidly evolving digital world, there is increasing concern about the impact of digital technologies and social media on the mental health of young people. Policymakers and the public are nervous. Psychologists are facing mounting pressures to deliver evidence that can inform policies and practices to safeguard both young people and society at large. However, research progress is slow while technological change is accelerating.My talk will reflect on this, both as a question of psychological science and metascience. Digital companies have designed highly popular environments that differ in important ways from traditional offline spaces. By revisiting the foundations of psychology (e.g. development and cognition) and considering digital changes' impact on theories and findings, we gain deeper insights into questions such as the following. (1) How do digital environments exacerbate developmental vulnerabilities that predispose young people to mental health conditions? (2) How do digital designs interact with cognitive and learning processes, formalised through computational approaches such as reinforcement learning or Bayesian modelling?However, we also need to face deeper questions about what it means to do science about new technologies and the challenge of keeping pace with technological advancements. Therefore, I discuss the concept of ‘fast science’, where, during crises, scientists might lower their standards of evidence to come to conclusions quicker. Might psychologists want to take this approach in the face of technological change and looming concerns? The talk concludes with a discussion of such strategies for 21st-century psychology research in the era of digitalization.

SeminarNeuroscience

Imagining and seeing: two faces of prosopagnosia

Jason Barton
University of British Columbia
Nov 5, 2024
SeminarNeuroscienceRecording

Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness

Sharon Gilad-Gutnick
MIT
May 2, 2024
SeminarNeuroscienceRecording

Combined electrophysiological and optical recording of multi-scale neural circuit dynamics

Chris Lewis
University of Zurich
Apr 30, 2024

This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.

SeminarNeuroscience

Stability of visual processing in passive and active vision

Tobias Rose
Institute of Experimental Epileptology and Cognition Research University of Bonn Medical Center
Mar 28, 2024

The visual system faces a dual challenge. On the one hand, features of the natural visual environment should be stably processed - irrespective of ongoing wiring changes, representational drift, and behavior. On the other hand, eye, head, and body motion require a robust integration of pose and gaze shifts in visual computations for a stable perception of the world. We address these dimensions of stable visual processing by studying the circuit mechanism of long-term representational stability, focusing on the role of plasticity, network structure, experience, and behavioral state while recording large-scale neuronal activity with miniature two-photon microscopy.

SeminarNeuroscience

Modeling idiosyncratic evaluation of faces

Alexander Todorov
University of Chicago
Mar 26, 2024
SeminarNeuroscienceRecording

Recognizing Faces: Insights from Group and Individual Differences

Catherine Mondloch
Brock University
Jan 23, 2024
SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 15, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 8, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscienceRecording

State-of-the-Art Spike Sorting with SpikeInterface

Samuel Garcia and Alessio Buccino
CRNS, Lyon, France and Allen Institute for Neural Dynamics, Seattle, USA
Nov 7, 2023

This webinar will focus on spike sorting analysis with SpikeInterface, an open-source framework for the analysis of extracellular electrophysiology data. After a brief introduction of the project (~30 mins) highlighting the basics of the SpikeInterface software and advanced features (e.g., data compression, quality metrics, drift correction, cloud visualization), we will have an extensive hands-on tutorial (~90 mins) showing how to use SpikeInterface in a real-world scenario. After attending the webinar, you will: (1) have a global overview of the different steps involved in a processing pipeline; (2) know how to write a complete analysis pipeline with SpikeInterface.

SeminarNeuroscience

Effect of nutrient sensing by microglia on mouse behavior

Agnès Nadjar
University of Bordeaux, France
Nov 7, 2023

Microglia are the brain macrophages, eliciting multifaceted functions to maintain brain homeostasis across lifetime. To achieve this, microglia are able to sense a plethora of signals in their close environment. In the lab, we investigate the effect of nutrients on microglia function for several reasons: 1) Microglia express all the cellular machinery required to sense nutrients; 2) Eating habits have changed considerably over the last century, towards diets rich in fats and sugars; 3) This so-called "Western diet" is accompanied by an increase in the occurrence of neuropathologies, in which microglia are known to play a role. In my talk, I will present data showing how variations in nutrient intake alter microglia function, including exacerbation of synaptic pruning, with profound consequences for neuronal activity and behavior. I will also show unpublished data on the mechanisms underlying the effects of nutrients on microglia, notably through the regulation of their metabolic activity.

SeminarNeuroscience

Vocal emotion perception at millisecond speed

Ana Pinehiro
University of Lisbon
Oct 17, 2023

The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.

SeminarNeuroscienceRecording

Workplace Experiences of LGBTQIA+ Academics in Psychology, Psychiatry, and Neuroscience

ALBA Network
Jun 30, 2023

In this webinar, Dr David Pagliaccio discusses the findings of his recent pre-print on workplace bias and discrimination faced by LGBTQIA+ brain scientists in the US.

SeminarNeuroscienceRecording

Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness

Sharon Gilad-Gutnick
MIT
Jun 20, 2023

Despite her still poor visual acuity and minimal visual experience, a 2-3 month old baby will reliably respond to facial expressions, smiling back at her caretaker or older sibling. But what if that same baby had been deprived of her early visual experience? Will she be able to appropriately respond to seemingly mundane interactions, such as a peer’s facial expression, if she begins seeing at the age of 10? My work is part of Project Prakash, a dual humanitarian/scientific mission to identify and treat curably blind children in India and then study how their brain learns to make sense of the visual world when their visual journey begins late in life. In my talk, I will give a brief overview of Project Prakash, and present findings from one of my primary lines of research: plasticity of face perception with late sight onset. Specifically, I will discuss a mixed methods effort to probe and explain the differential windows of plasticity that we find across different aspects of distributed face recognition, from distinguishing a face from a nonface early in the developmental trajectory, to recognizing facial expressions, identifying individuals, and even identifying one’s own caretaker. I will draw connections between our empirical findings and our recent theoretical work hypothesizing that children with late sight onset may suffer persistent face identification difficulties because of the unusual acuity progression they experience relative to typically developing infants. Finally, time permitting, I will point to potential implications of our findings in supporting newly-sighted children as they transition back into society and school, given that their needs and possibilities significantly change upon the introduction of vision into their lives.

SeminarNeuroscienceRecording

Internal representation of musical rhythm: transformation from sound to periodic beat

Tomas Lenc
Institute of Neuroscience, UCLouvain, Belgium
May 31, 2023

When listening to music, humans readily perceive and move along with a periodic beat. Critically, perception of a periodic beat is commonly elicited by rhythmic stimuli with physical features arranged in a way that is not strictly periodic. Hence, beat perception must capitalize on mechanisms that transform stimulus features into a temporally recurrent format with emphasized beat periodicity. Here, I will present a line of work that aims to clarify the nature and neural basis of this transformation. In these studies, electrophysiological activity was recorded as participants listened to rhythms known to induce perception of a consistent beat across healthy Western adults. The results show that the human brain selectively emphasizes beat representation when it is not acoustically prominent in the stimulus, and this transformation (i) can be captured non-invasively using surface EEG in adult participants, (ii) is already in place in 5- to 6-month-old infants, and (iii) cannot be fully explained by subcortical auditory nonlinearities. Moreover, as revealed by human intracerebral recordings, a prominent beat representation emerges already in the primary auditory cortex. Finally, electrophysiological recordings from the auditory cortex of a rhesus monkey show a significant enhancement of beat periodicities in this area, similar to humans. Taken together, these findings indicate an early, general auditory cortical stage of processing by which rhythmic inputs are rendered more temporally recurrent than they are in reality. Already present in non-human primates and human infants, this "periodized" default format could then be shaped by higher-level associative sensory-motor areas and guide movement in individuals with strongly coupled auditory and motor systems. Together, this highlights the multiplicity of neural processes supporting coordinated musical behaviors widely observed across human cultures.The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement

SeminarNeuroscienceRecording

Feedback control in the nervous system: from cells and circuits to behaviour

Timothy O'Leary
Department of Engineering, University of Cambridge
May 16, 2023

The nervous system is fundamentally a closed loop control device: the output of actions continually influences the internal state and subsequent actions. This is true at the single cell and even the molecular level, where “actions” take the form of signals that are fed back to achieve a variety of functions, including homeostasis, excitability and various kinds of multistability that allow switching and storage of memory. It is also true at the behavioural level, where an animal’s motor actions directly influence sensory input on short timescales, and higher level information about goals and intended actions are continually updated on the basis of current and past actions. Studying the brain in a closed loop setting requires a multidisciplinary approach, leveraging engineering and theory as well as advances in measuring and manipulating the nervous system. I will describe our recent attempts to achieve this fusion of approaches at multiple levels in the nervous system, from synaptic signalling to closed loop brain machine interfaces.

SeminarNeuroscienceRecording

A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time

Domenica Bueti
SISSA, Trieste (Italy)
Apr 19, 2023

Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.

SeminarNeuroscience

Learning to see stuff

Roland W. Fleming
Giessen University
Mar 13, 2023

Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.

SeminarNeuroscience

When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials

Raphaël Porcher
Université Paris Cité and Université Sorbonne Paris Nord
Jan 30, 2023

Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.

SeminarNeuroscienceRecording

Implications of Vector-space models of Relational Concepts

Priya Kalra
Western University
Jan 26, 2023

Vector-space models are used frequently to compare similarity and dimensionality among entity concepts. What happens when we apply these models to relational concepts? What is the evidence that such models do apply to relational concepts? If we use such a model, then one implication is that maximizing surface feature variation should improve relational concept learning. For example, in STEM instruction, the effectiveness of teaching by analogy is often limited by students’ focus on superficial features of the source and target exemplars. However, in contrast to the prediction of the vector-space computational model, the strategy of progressive alignment (moving from perceptually similar to different targets) has been suggested to address this issue (Gentner & Hoyos, 2017), and human behavioral evidence has shown benefits from progressive alignment. Here I will present some preliminary data that supports the computational approach. Participants were explicitly instructed to match stimuli based on relations while perceptual similarity of stimuli varied parametrically. We found that lower perceptual similarity reduced accurate relational matching. This finding demonstrates that perceptual similarity may interfere with relational judgements, but also hints at why progressive alignment maybe effective. These are preliminary, exploratory data and I to hope receive feedback on the framework and to start a discussion in a group on the utility of vector-space models for relational concepts in general.

SeminarNeuroscienceRecording

Modelling metaphor comprehension as a form of analogizing

Gerard Steen
University of Amsterdam
Nov 30, 2022

What do people do when they comprehend language in discourse? According to many psychologists, they build and maintain cognitive representations of utterances in four complementary mental models for discourse that interact with each other: the surface text, the text base, the situation model, and the context model. When people encounter metaphors in these utterances, they need to incorporate them into each of these mental representations for the discourse. Since influential metaphor theories define metaphor as a form of (figurative) analogy, involving cross-domain mapping of a smaller or greater extent, the general expectation has been that metaphor comprehension is also based on analogizing. This expectation, however, has been partly borne out by the data, but not completely. There is no one-to-one relationship between metaphor as (conceptual) structure (analogy) and metaphor as (psychological) process (analogizing). According to Deliberate Metaphor Theory (DMT), only some metaphors are handled by analogy. Instead, most metaphors are presumably handled by lexical disambiguation. This is a hypothesis that brings together most metaphor research in a provocatively new way: it means that most metaphors are not processed metaphorically, which produces a paradox of metaphor. In this talk I will sketch out how this paradox arises and how it can be resolved by a new version of DMT, which I have described in my forthcoming book Slowing metaphor down: Updating Deliberate Metaphor Theory (currently under review). In this theory, the distinction between, but also the relation between, analogy in metaphorical structure versus analogy in metaphorical process is of central importance.

SeminarNeuroscience

Intrinsic Geometry of a Combinatorial Sensory Neural Code for Birdsong

Tim Gentner
University of California, San Diego, USA
Nov 9, 2022

Understanding the nature of neural representation is a central challenge of neuroscience. One common approach to this challenge is to compute receptive fields by correlating neural activity with external variables drawn from sensory signals. But these receptive fields are only meaningful to the experimenter, not the organism, because only the experimenter has access to both the neural activity and knowledge of the external variables. To understand neural representation more directly, recent methodological advances have sought to capture the intrinsic geometry of sensory driven neural responses without external reference. To date, this approach has largely been restricted to low-dimensional stimuli as in spatial navigation. In this talk, I will discuss recent work from my lab examining the intrinsic geometry of sensory representations in a model vocal communication system, songbirds. From the assumption that sensory systems capture invariant relationships among stimulus features, we conceptualized the space of natural birdsongs to lie on the surface of an n-dimensional hypersphere. We computed composite receptive field models for large populations of simultaneously recorded single neurons in the auditory forebrain and show that solutions to these models define convex regions of response probability in the spherical stimulus space. We then define a combinatorial code over the set of receptive fields, realized in the moment-to-moment spiking and non-spiking patterns across the population, and show that this code can be used to reconstruct high-fidelity spectrographic representations of natural songs from evoked neural responses. Notably, we find that topological relationships among combinatorial codewords directly mirror acoustic relationships among songs in the spherical stimulus space. That is, the time-varying pattern of co-activity across the neural population expresses an intrinsic representational geometry that mirrors the natural, extrinsic stimulus space.  Combinatorial patterns across this intrinsic space directly represent complex vocal communication signals, do not require computation of receptive fields, and are in a form, spike time coincidences, amenable to biophysical mechanisms of neural information propagation.

SeminarNeuroscience

NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them

Multiple speakers
Nov 9, 2022

“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.

SeminarNeuroscienceRecording

What do neurons want?

Gabriel Kreiman
Harvard
Oct 25, 2022
SeminarNeuroscience

New Insights into the Neural Machinery of Face Recognition

Winrich Freiwald
Rockefeller
Jul 12, 2022
SeminarNeuroscience

Peripersonal space (PPS) as a primary interface for self-environment interactions

Andrea Serino
CHUV Lausanne, Switzerland
Jun 28, 2022

Peripersonal space (PPS) defines the portion of space where interactions between our body and the external environment more likely occur. There is no physical boundary defining the PPS with respect to the extrapersonal space, but PPS is continuously constructed by a dedicated neural system integrating external stimuli and tactile stimuli on the body, as a function of their potential interaction. This mechanism represents a primary interface between the individual and the environment. In this talk, I will present most recent evidence and highlight the current debate about the neural and computational mechanisms of PPS, its main functions and properties. I will discuss novel data showing how PPS dynamically shapes to optimize body-environment interactions. I will describe a novel electrophysiological paradigm to study and measure PPS, and show how this has been used to search for a basic marker of potentials of self-environment interaction in newborns and patients with disorders of consciousness. Finally, I will discuss how PPS is also involved in, and in turn shaped by, social interactions. Under these acceptances, I will discuss how PPS plays a key role in self-consciousness.

SeminarNeuroscienceRecording

Where do problem spaces come from? On metaphors and representational change

Benjamin Angerer
Osnabrück University
Jun 15, 2022

The challenges of problem solving do not exclusively lie in how to perform heuristic search, but they begin with how we understand a given task: How to cognitively represent the task domain and its components can determine how quickly someone is able to progress towards a solution, whether advanced strategies can be discovered, or even whether a solution is found at all. While this challenge of constructing and changing representations has been acknowledged early on in problem solving research, for the most part it has been sidestepped by focussing on simple, well-defined problems whose representation is almost fully determined by the task instructions. Thus, the established theory of problem solving as heuristic search in problem spaces has little to say on this. In this talk, I will present a study designed to explore this issue, by virtue of finding and refining an adequate problem representation being its main challenge. In this exploratory case study, it was investigated how pairs of participants acquaint themselves with a complex spatial transformation task in the domain of iterated mental paper folding over the course of several days. Participants have to understand the geometry of edges which occurs when repeatedly mentally folding a sheet of paper in alternating directions without the use of external aids. Faced with the difficulty of handling increasingly complex folds in light of limited cognitive capacity, participants are forced to look for ways in which to represent folds more efficiently. In a qualitative analysis of video recordings of the participants' behaviour, the development of their conceptualisation of the task domain was traced over the course of the study, focussing especially on their use of gesture and the spontaneous occurrence and use of metaphors in the construction of new representations. Based on these observations, I will conclude the talk with several theoretical speculations regarding the roles of metaphor and cognitive capacity in representational change.

SeminarNeuroscience

Chemistry of the adaptive mind: lessons from dopamine

Roshan Cools, PhD
Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Department of ...
Jun 14, 2022

The human brain faces a variety of computational dilemmas, including the flexibility/stability, the speed/accuracy and the labor/leisure tradeoff. I will argue that striatal dopamine is particularly well suited to dynamically regulate these computational tradeoffs depending on constantly changing task demands. This working hypothesis is grounded in evidence from recent studies on learning, motivation and cognitive control in human volunteers, using chemical PET, psychopharmacology, and/or fMRI. These studies also begin to elucidate the mechanisms underlying the huge variability in catecholaminergic drug effects across different individuals and across different task contexts. For example, I will demonstrate how effects of the most commonly used psychostimulant methylphenidate on learning, Pavlovian and effortful instrumental control depend on fluctuations in current environmental volatility, on individual differences in working memory capacity and on opportunity cost respectively.

SeminarNeuroscience

Adaptive neural network classifier for decoding finger movements

Alexey Zabolotniy
HSE University
Jun 2, 2022

While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.

SeminarNeuroscienceRecording

Heterogeneity and non-random connectivity in reservoir computing

Abigail Morrison
Jülich Research Centre & RWTH Aachen University, Germany
Jun 1, 2022

Reservoir computing is a promising framework to study cortical computation, as it is based on continuous, online processing and the requirements and operating principles are compatible with cortical circuit dynamics. However, the framework has issues that limit its scope as a generic model for cortical processing. The most obvious of these is that, in traditional models, learning is restricted to the output projections and takes place in a fully supervised manner. If such an output layer is interpreted at face value as downstream computation, this is biologically questionable. If it is interpreted merely as a demonstration that the network can accurately represent the information, this immediately raises the question of what would be biologically plausible mechanisms for transmitting the information represented by a reservoir and incorporating it in downstream computations. Another major issue is that we have as yet only modest insight into how the structural and dynamical features of a network influence its computational capacity, which is necessary not only for gaining an understanding of those features in biological brains, but also for exploiting reservoir computing as a neuromorphic application. In this talk, I will first demonstrate a method for quantifying the representational capacity of reservoirs without training them on tasks. Based on this technique, which allows systematic comparison of systems, I then present our recent work towards understanding the roles of heterogeneity and connectivity patterns in enhancing both the computational properties of a network and its ability to reliably transmit to downstream networks. Finally, I will give a brief taster of our current efforts to apply the reservoir computing framework to magnetic systems as an approach to neuromorphic computing.

SeminarNeuroscience

In pursuit of a universal, biomimetic iBCI decoder: Exploring the manifold representations of action in the motor cortex

Lee Miller
Northwestern University
May 20, 2022

My group pioneered the development of a novel intracortical brain computer interface (iBCI) that decodes muscle activity (EMG) from signals recorded in the motor cortex of animals. We use these synthetic EMG signals to control Functional Electrical Stimulation (FES), which causes the muscles to contract and thereby restores rudimentary voluntary control of the paralyzed limb. In the past few years, there has been much interest in the fact that information from the millions of neurons active during movement can be reduced to a small number of “latent” signals in a low-dimensional manifold computed from the multiple neuron recordings. These signals can be used to provide a stable prediction of the animal’s behavior over many months-long periods, and they may also provide the means to implement methods of transfer learning across individuals, an application that could be of particular importance for paralyzed human users. We have begun to examine the representation within this latent space, of a broad range of behaviors, including well-learned, stereotyped movements in the lab, and more natural movements in the animal’s home cage, meant to better represent a person’s daily activities. We intend to develop an FES-based iBCI that will restore voluntary movement across a broad range of motor tasks without need for intermittent recalibration. However, the nonlinearities and context dependence within this low-dimensional manifold present significant challenges.

SeminarNeuroscience

Faking emotions and a therapeutic role for robots and chatbots: Ethics of using AI in psychotherapy

Bipin Indurkhya
Cognitive Science Department, Jagiellonian University, Kraków
May 19, 2022

In recent years, there has been a proliferation of social robots and chatbots that are designed so that users make an emotional attachment with them. This talk will start by presenting the first such chatbot, a program called Eliza designed by Joseph Weizenbaum in the mid 1960s. Then we will look at some recent robots and chatbots with Eliza-like interfaces and examine their benefits as well as various ethical issues raised by deploying such systems.

SeminarNeuroscience

The Problem of Testimony

Ulrike Hahn
Birkbeck, University of London
May 4, 2022

The talk will detail work drawing on behavioural results, formal analysis, and computational modelling with agent-based simulations to unpack the scale of the challenge humans face when trying to work out and factor in the reliability of their sources. In particular, it is shown how and why this task admits of no easy solution in the context of wider communication networks, and how this will affect the accuracy of our beliefs. The implications of this for the shift in the size and topology of our communication networks through the uncontrolled rise of social media are discussed.

SeminarNeuroscienceRecording

The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules

Megan Porter
University of Hawaii
May 2, 2022

Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.

SeminarNeuroscienceRecording

Genetic-based brain machine interfaces for visual restoration

Serge Picaud
Institute Vision Paris
Apr 13, 2022

Visual restoration is certainly the greatest challenge for brain-machine interfaces with the high pixel number and high refreshing rate. In the recent year, we brought retinal prostheses and optogenetic therapy up to successful clinical trials. Concerning visual restoration at the cortical level, prostheses have shown efficacy for limited periods of time and limited pixel numbers. We are investigating the potential of sonogenetics to develop a non-contact brain machine interface allowing long-lasting activation of the visual cortex. The presentation will introduce our genetic-based brain machine interfaces for visual restoration at the retinal and cortical levels.

SeminarNeuroscience

Inter-individual variability in reward seeking and decision making: role of social life and consequence for vulnerability to nicotine

Philippe Faure
Neurophysiology and Behavior , Sorbonne University, Paris
Apr 7, 2022

Inter-individual variability refers to differences in the expression of behaviors between members of a population. For instance, some individuals take greater risks, are more attracted to immediate gains or are more susceptible to drugs of abuse than others. To probe the neural bases of inter-individual variability  we study reward seeking and decision-making in mice, and dissect the specific role of dopamine in the modulation of these behaviors. Using a spatial version of the multi-armed bandit task, in which mice are faced with consecutive binary choices, we could link modifications of midbrain dopamine cell dynamics with modulation of exploratory behaviors, a major component of individual characteristics in mice. By analyzing mouse behaviors in semi-naturalistic environments, we then explored the role of social relationships in the shaping of dopamine activity and associated beahviors. I will present recent data from the laboratory suggesting that changes in the activity of dopaminergic networks link social influences with variations in the expression of non-social behaviors: by acting on the dopamine system, the social context may indeed affect the capacity of individuals to make decisions, as well as their vulnerability to drugs of abuse, in particular nicotine.

SeminarNeuroscienceRecording

Visualization and manipulation of our perception and imagery by BCI

Takufumi Yanagisawa
Osaka University
Apr 1, 2022

We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.

SeminarNeuroscience

Deception, ExoNETs, SmushWare & Organic Data: Tech-facilitated neurorehabilitation & human-machine training

James Patton
University of Illinois at Chicago, Shirley Ryan Ability Lab
Feb 22, 2022

Making use of visual display technology and human-robotic interfaces, many researchers have illustrated various opportunities to distort visual and physical realities. We have had success with interventions such as error augmentation, sensory crossover, and negative viscosity.  Judicial application of these techniques leads to training situations that enhance the learning process and can restore movement ability after neural injury. I will trace out clinical studies that have employed such technologies to improve the health and function, as well as share some leading-edge insights that include deceiving the patient, moving the "smarts" of software into the hardware, and examining clinical effectiveness

SeminarNeuroscience

Keeping your Brain in Balance: the Ups and Downs of Homeostatic Plasticity (virtual)

Gina Turrigiano, PhD
Professor, Department of Biology, Brandeis University, USA
Feb 17, 2022

Our brains must generate and maintain stable activity patterns over decades of life, despite the dramatic changes in circuit connectivity and function induced by learning and experience-dependent plasticity. How do our brains acheive this balance between opposing need for plasticity and stability? Over the past two decades, we and others have uncovered a family of “homeostatic” negative feedback mechanisms that are theorized to stabilize overall brain activity while allowing specific connections to be reconfigured by experience. Here I discuss recent work in which we demonstrate that individual neocortical neurons in freely behaving animals indeed have a homeostatic activity set-point, to which they return in the face of perturbations. Intriguingly, this firing rate homeostasis is gated by sleep/wake states in a manner that depends on the direction of homeostatic regulation: upward-firing rate homeostasis occurs selectively during periods of active wake, while downward-firing rate homeostasis occurs selectively during periods of sleep, suggesting that an important function of sleep is to temporally segregate bidirectional plasticity. Finally, we show that firing rate homeostasis is compromised in an animal model of autism spectrum disorder. Together our findings suggest that loss of homeostatic plasticity in some neurological disorders may render central circuits unable to compensate for the normal perturbations induced by development and learning.

SeminarNeuroscienceRecording

ALBA-WWN Webinar: What it takes to succeed as a neuroscientist in Africa

ALBA Network & World Women in Neuroscience
Feb 2, 2022

In this webinar, the ALBA Network & World Women in Neuroscience partner to address equity, inclusion & diversity issues across the Sub-Saharan African neuroscience community. The panel discussion will explore the challenges and biases faced by African neuroscientists while establishing their careers - focusing on a lack of mentoring and networking but also on the difficulties to raise funding - as well as display the strengths present in the region, which can be exploited to find solutions. Registration is free but required: https://www.alba.network/alba-wwn-webinar-africa

ePosterNeuroscience

Adaptive brain-computer interfaces based on error-related potentials and reinforcement learning

Aline Xavier Fidencio, Christian Klaes, Ioannis Iossifidis

Bernstein Conference 2024

ePosterNeuroscience

An Attention-based Multimodal Decoder for Hybrid Brain-Computer Interface Control Systems

Marita Metzler, Christian Klaes

Bernstein Conference 2024

ePosterNeuroscience

Calcium imaging-based brain-computer interface in freely behaving mice

Linor Balilti-Turgeman, Or Pinchasov, Nitzan Geva, Alon Rubin, Yaniv Ziv

Bernstein Conference 2024

ePosterNeuroscience

Efficient cortical spike train decoding for brain-machine interface implants with recurrent spiking neural networks

Tengjun Liu, Julia Gygax, Julian Rossbroich, Yansong Chua, Shaomin Zhang, Friedemann Zenke

Bernstein Conference 2024

ePosterNeuroscience

Identifying cortical learning algorithms using Brain-Machine Interfaces

Sofia Pereira da Silva, Denis Alevi, Friedrich Schuessler, Henning Sprekeler

Bernstein Conference 2024

ePosterNeuroscience

A brain-computer interface in prefrontal cortex that suppresses neural variability

Ryan Williamson,Akash Umakantha,Chris Ki,Byron Yu,Matthew Smith

COSYNE 2022

ePosterNeuroscience

A closed-loop emulator that accurately predicts brain-machine interface decoder performance

Ken-Fu Liang,Jonathan C. Kao

COSYNE 2022

ePosterNeuroscience

High-level prediction signals cascade through the macaque face-processing hierarchy

Tarana Nigam,Caspar M. Schwiedrzik

COSYNE 2022

ePosterNeuroscience

High-level prediction signals cascade through the macaque face-processing hierarchy

Tarana Nigam,Caspar M. Schwiedrzik

COSYNE 2022

ePosterNeuroscience

Learning static and motion cues to material by predicting moving surfaces

Kate Storrs,Roland Fleming

COSYNE 2022

ePosterNeuroscience

Learning static and motion cues to material by predicting moving surfaces

Kate Storrs,Roland Fleming

COSYNE 2022

ePosterNeuroscience

Stabilizing brain-computer interfaces through nonlinear manifold alignment with dynamics

Brianna Karpowicz,Yahia H. Ali,Lahiru N. Wimalasena,Mohammad Reza Keshtkaran,Andrew R. Sedler,Kevin Bodkin,Xuan Ma,Lee E. Miller,Chethan Pandarinath

COSYNE 2022

ePosterNeuroscience

Stabilizing brain-computer interfaces through nonlinear manifold alignment with dynamics

Brianna Karpowicz,Yahia H. Ali,Lahiru N. Wimalasena,Mohammad Reza Keshtkaran,Andrew R. Sedler,Kevin Bodkin,Xuan Ma,Lee E. Miller,Chethan Pandarinath

COSYNE 2022

ePosterNeuroscience

Calcium imaging-based brain-computer interface for investigating long-term neuronal code dynamics

Linor Balilti Turgeman, Yaniv Ziv, Or Pinchasov, Nitzan Geva, Alon Rubin

COSYNE 2023

ePosterNeuroscience

Compact neural representations in co-adaptive Brain-Computer Interfaces

Pavithra Rajeswaran, Alexandre Payeur, Guillaume Lajoie, Amy L. Orsborn

COSYNE 2023

ePosterNeuroscience

Thoughtful faces: Using facial features to infer naturalistic cognitive processing across species

Alejandro Tlaie Boria, Katharine Shapcott, Muad Abd el Hay, Berkutay Mert, Pierre-Antoine Ferracci, Robert Taylor, Iuliia Glukhova, Martha Nari Havenith, Marieke Schölvinck

COSYNE 2023

ePosterNeuroscience

Activity exploration influences learning speeds in models of brain-computer interfaces

Stefan Mihalas, Matthew Bull, Jacob Sacks, Marton Rozsa, Christina Wang, Karel Svoboda, Matthew Golub, Kyle Aitken, Kayvon Daie

COSYNE 2025

ePosterNeuroscience

An Anatomical Explanation of the Inverted Face Effect

Garrison Cottrell, Shubham Kulkarni, Martha Gahl

COSYNE 2025

ePosterNeuroscience

Cheese3D: sensitive detection and analysis of whole-face movement in mice

Irene Nozal Martin, Kyle Daruwalla, Linghua Zhang, Diana Naglic, Andrew Frankel, Yuhan Zhang, Catherine Rasgaitis, Xinyan Zhang, Zainab Ahmad, Xun Helen Hou

COSYNE 2025

ePosterNeuroscience

Effect of surface material on whisker-surface interaction and mechanosensory neuron responses

Isis Wyche, Daniel O'Connor

COSYNE 2025

ePosterNeuroscience

Non-invasive brain-machine interface control with artificial intelligence copilots

Johannes Lee, Sangjoon Lee, Abhishek Mishra, Xu Yan, Brandon McMahan, Brent Gaisford, Charles Kobashigawa, Mike Qu, Chang Xie, Jonathan Kao

COSYNE 2025

ePosterNeuroscience

Towards generalizable, real-time decoders for brain-computer interfaces

Avery Hee-Woon Ryoo, Nanda H Krishna, Ximeng Mao, Matthew G. Perich, Guillaume Lajoie

COSYNE 2025

ePosterNeuroscience

Adaptive brain-machine interface learning uses similar neuronal strategies in motor and hippocampal networks

Catalin Mitelut, Andres de Vicente, Renan Augosto Viana Mendes, Mariona Colomer Rosell, Lorenzo Marianelli, Flavio Donato

FENS Forum 2024

ePosterNeuroscience

Anatomically heterogeneous pyramidal cells in supragranular layers of the dorsal cortex show the surface-to-deep firing frequency increase during natural sleep

Boglárka Bozsó, Robert G. Averkin, János Horváth, Sándor Bordé, Gábor Tamás

FENS Forum 2024

ePosterNeuroscience

BrainTrawler Lite: Navigating through a multi-scale multi-modal gene transcriptomics data resource through a lightweight user interface

Bianca Burger, Tobias Peherstorfer, Sophia Ulonska, Florian Ganglberger, Domic Kargl, Simone Locato, Bader Al-Hamdan, Marvin Kleinlehner, Wulf Haubensak, Katja Bühler

FENS Forum 2024

ePosterNeuroscience

Carbon-based neural interfaces to probe retinal and cortical circuits with functional ultrasound imaging in vivo

Julie Zhang, Eduard Masvidal-Codina, F. Taygun Duvan, Florian Fallegger, Diep Nguyen, Steven Walston, Vi Anh Nguyen, Julie Dégardin, Ruben Goulet, Quénol César, Fabrice Arcizet, Jose A. Garrido, Anton Guimerà-Brunet, Rob C. Wykes, Serge Picaud

FENS Forum 2024

ePosterNeuroscience

Causal control of spatial navigation by a hippocampal brain-machine interface induces rapid reconfiguration of cognitive maps

Charles Micou, Hinze Ho, Timothy O'Leary, Julija Krupic

FENS Forum 2024

ePosterNeuroscience

Characterization of the transcriptional landscape of endogenous retroviruses at the fetal-maternal interface in a mouse model of autism spectrum disorder

Martina Giudice, Antonella Camaioni, Anna Maria Tartaglione, Vita Petrone, Claudia Matteucci, Gemma Calamandrei, Paola Sinibaldi-Vallebona, Laura Ricceri, Emanuela Balestrieri, Chiara Cipriani

FENS Forum 2024

ePosterNeuroscience

Comparison of learning effects between on-demand and face-to-face classes from the viewpoint of brain activity

Yugo Okada, Kohei Sakaki, Ryuta Kawashima

FENS Forum 2024

ePosterNeuroscience

Cortical layer-specific repetition suppression to faces in the fusiform face area

Dace Apsvalka, Sung-Mu Lee, Marta Correia, Richard Henson

FENS Forum 2024

ePosterNeuroscience

Development of a next-generation bidirectional neurobiohybrid interface with optimized energy efficiency enabling real-time adaptive neuromodulation

Anna Kobzar, Nathan Schoonjans, Pascal Mariot, Valerio Farfariello, David Delcroix, Redha Kassi, Alain Cappy, Alexis Vlandas, Virginie Hoel, Christel Vanbesien

FENS Forum 2024

ePosterNeuroscience

Dieckol as a novel neuroprotective candidate with cognition improvement and multifaceted mechanisms in Alzheimer's disease mouse model

Jeong-Hyun Yoon, Mira Jun

FENS Forum 2024

ePosterNeuroscience

An event-based data compressive telemetry for high-bandwidth intracortical brain-computer interfaces

Hua-Peng Liaw, Yuming He, Pietro Russo, Marios Gourdouparis, Chengyao Shi, Paul Hueber, Yao-Hong Liu

FENS Forum 2024

ePosterNeuroscience

LTP at excitatory synapses onto inhibitory interneurons in the hippocampus depends on AMPA receptor surface mobility

Legeolas Velez, Aurélie Lampin-Saint-Amaux, Pablo Molle, Christelle Breillat, Daniel Choquet, Yann Humeau, Frédéric Lanore

FENS Forum 2024

ePosterNeuroscience

A graphic user interface for identification and characterization of neuronal ensembles in two-photon calcium imaging recordings

Ricardo Velázquez Contreras, Luis Carrillo Reid

FENS Forum 2024

ePosterNeuroscience

Improved neuronal surface detection of α2δ proteins by nanobody immunolabeling

Ruslan Stanika, Manuel Hessenberger, Gerald J. Obermair

FENS Forum 2024

ePosterNeuroscience

Inter-brain synchronization in face-to-face and online group communication

Kohei Sakaki, Ryuta Kawashima

FENS Forum 2024

ePosterNeuroscience

Investigating design parameters for improved tissue integration in brain-computer-interface technology

Corinne Orlemann, Roxana N. Kooijmans, Laura M. De Santis, Paul Neering, Christian Boehler, Kirti Sharma, Patrick Ruther, Maria Asplund, Pieter R. Roelfsema

FENS Forum 2024

ePosterNeuroscience

Involvement of tyrosine kinase Pyk2 in synaptotoxicity associated with Alzheimer’s disease: A protein at the interface of amyloid and Tau pathologies

Quentin Rodriguez, Eve Borel, Sylvie Boisseau, Karina Vargas-Baron, Floriane Payet, Béatrice Blot, Mireille Albrieux, Alain Buisson

FENS Forum 2024

ePosterNeuroscience

The Janus faces of nanoparticles at the neurovascular unit: A double-edged sword in neurodegeneration

Giulia Terribile, Sara Di Girolamo, Paolo Spaiardi, Gerardo Biella, Silvia Sesana, Francesca Re, Giulio Alfredo Sancini

FENS Forum 2024

face coverage

90 items

Seminar50
ePoster40
Domain spotlight

Explore how face research is advancing inside Neuro.

Visit domain