← Back

Firing Rate Networks

Topic spotlight
TopicNeuro

firing rate networks

Discover seminars, jobs, and research tagged with firing rate networks across Neuro.
1 curated item1 Seminar
Updated almost 4 years ago
1 items · firing rate networks

Latest

1 result
SeminarNeuroscienceRecording

Taming chaos in neural circuits

Rainer Engelken
Columbia University
Feb 23, 2022

Neural circuits exhibit complex activity patterns, both spontaneously and in response to external stimuli. Information encoding and learning in neural circuits depend on the ability of time-varying stimuli to control spontaneous network activity. In particular, variability arising from the sensitivity to initial conditions of recurrent cortical circuits can limit the information conveyed about the sensory input. Spiking and firing rate network models can exhibit such sensitivity to initial conditions that are reflected in their dynamic entropy rate and attractor dimensionality computed from their full Lyapunov spectrum. I will show how chaos in both spiking and rate networks depends on biophysical properties of neurons and the statistics of time-varying stimuli. In spiking networks, increasing the input rate or coupling strength aids in controlling the driven target circuit, which is reflected in both a reduced trial-to-trial variability and a decreased dynamic entropy rate. With sufficiently strong input, a transition towards complete network state control occurs. Surprisingly, this transition does not coincide with the transition from chaos to stability but occurs at even larger values of external input strength. Controllability of spiking activity is facilitated when neurons in the target circuit have a sharp spike onset, thus a high speed by which neurons launch into the action potential. I will also discuss chaos and controllability in firing-rate networks in the balanced state. For these, external control of recurrent dynamics strongly depends on correlations in the input. This phenomenon was studied with a non-stationary dynamic mean-field theory that determines how the activity statistics and the largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size. This shows that uncorrelated inputs facilitate learning in balanced networks. The results highlight the potential of Lyapunov spectrum analysis as a diagnostic for machine learning applications of recurrent networks. They are also relevant in light of recent advances in optogenetics that allow for time-dependent stimulation of a select population of neurons.

firing rate networks coverage

1 items

Seminar1
Domain spotlight

Explore how firing rate networks research is advancing inside Neuro.

Visit domain