fluorescence
Latest
Cortical seizure mechanisms: insights from calcium, glutamate and GABA imaging
Focal neocortical epilepsy is associated with intermittent brief population discharges (interictal spikes), which resemble sentinel spikes that often occur at the onset of seizures. Why interictal spikes self-terminate whilst seizures persist and propagate is incompletely understood, but is likely to relate to the intermittent collapse of feed-forward GABAergic inhibition. Inhibition could fail through multiple mechanisms, including (i) an attenuation or even reversal of the driving force for chloride in postsynaptic neurons because of intense activation of GABAA receptors, (ii) an elevation of potassium secondary to chloride influx leading to depolarization of neurons, or (iii) insufficient GABA release from interneurons. I shall describe the results of experiments using fluorescence imaging of calcium, glutamate or GABA in awake rodent models of neocortical epileptiform activity. Interictal spikes were accompanied by brief glutamate transients which were maximal at the initiation site and rapidly propagatedcentrifugally. GABA transients lasted longer than glutamate transients and were maximal ~1.5 mm from the focus. Prior to seizure initiation GABA transients were attenuated, whilst glutamate transients increased, consistent with a progressive failure of local inhibitory restraint. As seizures increased in frequency, there was a gradual increase in the spatial extent of spike-associated glutamate transients associated with interictal spikes. Neurotransmitter imaging thus reveals a progressive collapse of an annulus of feed-forward GABA release, allowing runaway recruitment of excitatory neurons as a fundamental mechanism underlying the escape of seizures from local inhibitory restraint.
NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release
Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Multiphoton imaging with next-generation indicators
Two-photon (2P) in vivo functional imaging of genetically encoded fluorescent Ca2+indicators (GECIs) for neuronal activity has become a broadly applied standard tool in modern neuroscience, because it allows simultaneous imaging of the activity of many neurons at high spatial resolution within living animals. Unfortunately, the most commonly used light-sources – tunable femtosecond pulsed ti:sapphire lasers – can be prohibitively expensive for many labs and fall short of delivering sufficient powers for some new ultra-fast 2P microscopy modalities. Inexpensive homebuilt or industrial light sources such as Ytterbium fiber lasers (YbFLs) show great promise to overcome these limitations as they are becoming widely available at costs orders of magnitude lower and power outputs of up to many times higher than conventional ti:sapphire lasers. However, these lasers are typically bound to emitting a single wavelength (i.e., not tunable) centered around 1020-1060 nm, which fails to efficiently excite state of the art green GECIs such as jGCaMP7 or 8. To this end, we designed and characterized spectral variants (yellow CaMP = YCaMP) of the ultrasensitive genetically encoded calcium indicator jGCaMP7, that allows for efficient 2P-excitation at wavelengths above 1010nm. In this talk I will give a brief overview over some of the reasons why using a fiber laser for 2P excitation might be right for you. I will talk about the development of jYCaMP and some exciting new experimental avenues that it has opened while touching on the prospect that shifting biosensors yellow could have for the 2P imaging community. Please join me for an interesting and fun discussion on whether “yellow is the new green” after the talk!
Technologies for large scale cortical imaging and electrophysiology
Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.
When spontaneous waves meet angiogenesis: a case study from the neonatal retina
By continuously producing electrical signals, neurones are amongst the most energy-demanding cells in the organism. Resting ionic levels are restored via metabolic pumps that receive the necessary energy from oxygen supplied by blood vessels. Intense spontaneous neural activity is omnipresent in the developing CNS. It occurs during short, well-defined periods that coincide precisely with the timing of angiogenesis. Such coincidence cannot be random; there must be a universal mechanism triggering spontaneous activity concurrently with blood vessels invading neural territories for the first time. However, surprisingly little is known about the role of neural activity per se in guiding angiogenesis. Part of the reason is that it is challenging to study developing neurovascular networks in tri-dimensional space in the brain. We investigate these questions in the neonatal mouse retina, where blood vessels are much easier to visualise because they initially grow in a plane, while waves of spontaneous neural activity (spreading via cholinergic starburst amacrine cells) sweep across the retinal ganglion cell layer, in close juxtaposition with the growing vasculature. Blood vessels reach the periphery by postnatal day (P) 7-8, shortly before the cholinergic waves disappear (at P10). We discovered transient clusters of auto-fluorescent cells that form an annulus around the optic disc, gradually expanding to the periphery, which they reach at the same time as the growing blood vessels. Remarkably, these cells appear locked to the frontline of the growing vasculature. Moreover, by recording waves with a large-scale multielectrode array that enables us to visualise them at pan-retinal level, we found that their initiation points are not random; they follow a developmental centre-to-periphery pattern similar to the clusters and blood vessels. The density of growing blood vessels is higher in cluster areas than in-between clusters at matching eccentricity. The cluster cells appear to be phagocytosed by microglia. Blocking Pannexin1 (PANX1) hemichannels activity with probenecid completely blocks the spontaneous waves and results in the disappearance of the fluorescent cell clusters. We suggest that these transient cells are specialised, hyperactive neurones that form spontaneous activity hotspots, thereby triggering retinal waves through the release of ATP via PANX1 hemichannels. These activity hotspots attract new blood vessels to enhance local oxygen supply. Signalling through PANX1 attracts microglia that establish contact with these cells, eventually eliminating them once blood vessels have reached their vicinity. The auto-fluorescence that characterises the cell clusters may develop only once the process of microglial phagocytosis is initiated.
Carnosine negatively modulates pro-oxidant activities of M1 peripheral macrophages and prevents neuroinflammation induced by amyloid-β in microglial cells
Carnosine is a natural dipeptide widely distributed in mammalian tissues and exists at particularly high concentrations in skeletal and cardiac muscles and brain. A growing body of evidence shows that carnosine is involved in many cellular defense mechanisms against oxidative stress, including inhibition of amyloid-β (Aβ) aggregation, modulation of nitric oxide (NO) metabolism, and scavenging both reactive nitrogen and oxygen species. Different types of cells are involved in the innate immune response, with macrophage cells representing those primarily activated, especially under different diseases characterized by oxidative stress and systemic inflammation such as depression and cardiovascular disorders. Microglia, the tissue-resident macrophages of the brain, are emerging as a central player in regulating key pathways in central nervous system inflammation; with specific regard to Alzheimer’s disease (AD) these cells exert a dual role: on one hand promoting the clearance of Aβ via phagocytosis, on the other hand increasing neuroinflammation through the secretion of inflammatory mediators and free radicals. The activity of carnosine was tested in an in vitro model of macrophage activation (M1) (RAW 264.7 cells stimulated with LPS + IFN-γ) and in a well-validated model of Aβ-induced neuroinflammation (BV-2 microglia treated with Aβ oligomers). An ample set of techniques/assays including MTT assay, trypan blue exclusion test, high performance liquid chromatography, high-throughput real-time PCR, western blot, atomic force microscopy, microchip electrophoresis coupled to laser-induced fluorescence, and ELISA aimed to evaluate the antioxidant and anti-inflammatory activities of carnosine was employed. In our experimental model of macrophage activation (M1), therapeutic concentrations of carnosine exerted the following effects: 1) an increased degradation rate of NO into its non-toxic end-products nitrite and nitrate; 2) the amelioration of the macrophage energy state, by restoring nucleoside triphosphates and counterbalancing the changes in ATP/ADP, NAD+/NADH and NADP+/NADPH ratio obtained by LPS + IFN-γ induction; 3) a reduced expression of pro-oxidant enzymes (NADPH oxidase, Cyclooxygenase-2) and of the lipid peroxidation product malondialdehyde; 4) the rescue of antioxidant enzymes expression (Glutathione peroxidase 1, Superoxide dismutase 2, Catalase); 5) an increased synthesis of transforming growth factor-β1 (TGF-β1) combined with the negative modulation of interleukines 1β and 6 (IL-1β and IL-6), and 6) the induction of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). In our experimental model of Aβ-induced neuroinflammation, carnosine: 1) prevented cell death in BV-2 cells challenged with Aβ oligomers; 2) lowered oxidative stress by decreasing the expression of inducible nitric oxide synthase and NADPH oxidase, and the concentrations of nitric oxide and superoxide anion; 3) decreased the secretion of pro-inflammatory cytokines such as IL-1β simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1; 4) prevented Aβ-induced neurodegeneration in primary mixed neuronal cultures challenged with Aβ oligomers and these neuroprotective effects was completely abolished by SB431542, a selective inhibitor of type-1 TGF-β receptor. Overall, our data suggest a novel multimodal mechanism of action of carnosine underlying its protective effects in macrophages and microglia and the therapeutic potential of this dipeptide in counteracting pro-oxidant and pro-inflammatory phenomena observed in different disorders characterized by elevated levels of oxidative stress and inflammation such as depression, cardiovascular disorders, and Alzheimer’s disease.
Neuroscience Investigations in the Virgin Lands of African Biodiversity
Africa is blessed with a rich diversity and abundance in rodent and avian populations. This natural endowment on the continent portends research opportunities to study unique anatomical profiles and investigate animal models that may confer better neural architecture to study neurodegenerative diseases, adult neurogenesis, stroke and stem cell therapies. To this end, African researchers are beginning to pay closer attention to some of her indigenous rodents and birds in an attempt to develop spontaneous laboratory models for homegrown neuroscience-based research. For this presentation, I will be showing studies in our lab, involving cellular neuroanatomy of two rodents, the African giant rat (AGR) and Greater cane rat (GCR), Eidolon Bats (EB) and also the Striped Owl (SO). Using histological stains (Cresyl violet and Rapid Golgi) and immunohistochemical biomarkers (GFAP, NeuN, CNPase, Iba-1, Collagen 2, Doublecortin, Ki67, Calbindin, etc), and Electron Microscopy, morphology and functional organizations of neuronal and glial populations of the AGR , GCR, EB and SO brains have been described, with our work ongoing. In addition, the developmental profiles of the prenatal GCR brains have been chronicled across its entire gestational period. Brains of embryos/foetuses were harvested for gross morphological descriptions and then processed using immunofluorescence biomarkers to determine the pattern, onset, duration and peak of neurogenesis (Pax6, Tbr1, Tbr2, NF, HuCD, MAP2) and the onset and peak of glial cell expressions and myelination in the prenatal GCR. The outcome of these research efforts has shown unique neuroanatomical expressions and networks amongst Africa’s rich biodiversity. It is hopeful that continuous effort in this regard will provide sufficient basic research data on neural developments and cellular neuroanatomy with subsequent translational consequences.
Watching single molecules in action: How this can be used in neurodegeneration
This talk aims to show how new physical methods can advance biological and biomedical research. A major advance in physical chemistry in the last two decades has been the development of quantitative methods to directly observe individual molecules in solution, attached to surfaces, in the membrane of live cells or more recently inside live cells. These single-molecule fluorescence studies have now reached a stage where they can provide new insights into important biological problems. After presenting the principles of these methods, I will give some examples from our current research to probe the molecular basis of neurodegeneration. Here we have used single-molecule fluorescence to detect and analyse the low concentrations of soluble protein aggregates thought to be responsible for Alzheimer’s disease and determine the mechanisms by which they damage neurons. Lastly, I will describe how fundamental science aimed at watching single molecules incorporating nucleotides into DNA gave rise to a new rapid method to sequence DNA that is now widely used.
Dissociated neurovascular response to microelectrode stimulation in mouse visual cortex under two-photon microscopy and epifluorescence imaging
FENS Forum 2024
Mapping of neuronal populations with light-sheet fluorescence microscopy
FENS Forum 2024
Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes
FENS Forum 2024
Physiological measurements of activity and microtubule health in human iPSC-derived neurons using fluorescence and second harmonic microscopy
FENS Forum 2024
Visualization of the intact cochlea and its architecture by newly refined light sheet fluorescence microscopy
FENS Forum 2024
Waveform sampling-based fluorescence lifetime fiber photometry (FLiP) measurements
FENS Forum 2024
fluorescence coverage
15 items