Functional
functional interactions
Latest
Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis
The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.
The subcellular organization of excitation and inhibition underlying high-fidelity direction coding in the retina
Understanding how neural circuits in the brain compute information not only requires determining how individual inhibitory and excitatory elements of circuits are wired together, but also a detailed knowledge of their functional interactions. Recent advances in optogenetic techniques and mouse genetics now offer ways to specifically probe the functional properties of neural circuits with unprecedented specificity. Perhaps one of the most heavily interrogated circuits in the mouse brain is one in the retina that is involved in coding direction (reviewed by Mauss et al., 2017; Vaney et al., 2012). In this circuit, direction is encoded by specialized direction-selective (DS) ganglion cells (DSGCs), which respond robustly to objects moving in a ‘preferred’ direction but not in the opposite or ‘null’ direction (Barlow and Levick, 1965). We now know this computation relies on the coordination of three transmitter systems: glutamate, GABA and acetylcholine (ACh). In this talk, I will discuss the synaptic mechanisms that produce the spatiotemporal patterns of inhibition and excitation that are crucial for shaping directional selectivity. Special emphasis will be placed on the role of ACh, as it is unclear whether it is mediated by synaptic or non-synaptic mechanisms, which is in fact a central issue in the CNS. Barlow, H.B., and Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178, 477-504. Mauss, A.S., Vlasits, A., Borst, A., and Feller, M. (2017). Visual Circuits for Direction Selectivity. Annu Rev Neurosci 40, 211-230. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208
Computational Models of Large-Scale Brain Networks - Dynamics & Function
Theoretical and computational models of neural systems have been traditionally focused on small neural circuits, given the lack of reliable data on large-scale brain structures. The situation has started to change in recent years, with novel recording technologies and large organized efforts to describe the brain at a larger scale. In this talk, Professor Mejias from the University of Amsterdam will review his recent work on developing anatomically constrained computational models of large-scale cortical networks of monkeys, and how this approach can help to answer important questions in large-scale neuroscience. He will focus on three main aspects: (i) the emergence of functional interactions in different frequency regimes, (ii) the role of balance for efficient large-scale communication, and (iii) new paradigms of brain function, such as working memory, in large-scale networks.
functional interactions coverage
3 items