Latest

SeminarNeuroscience

sensorimotor control, mouvement, touch, EEG

Marieva Vlachou
Institut des Sciences du Mouvement Etienne Jules Marey, Aix-Marseille Université/CNRS, France
Dec 19, 2025

Traditionally, touch is associated with exteroception and is rarely considered a relevant sensory cue for controlling movements in space, unlike vision. We developed a technique to isolate and measure tactile involvement in controlling sliding finger movements over a surface. Young adults traced a 2D shape with their index finger under direct or mirror-reversed visual feedback to create a conflict between visual and somatosensory inputs. In this context, increased reliance on somatosensory input compromises movement accuracy. Based on the hypothesis that tactile cues contribute to guiding hand movements when in contact with a surface, we predicted poorer performance when the participants traced with their bare finger compared to when their tactile sensation was dampened by a smooth, rigid finger splint. The results supported this prediction. EEG source analyses revealed smaller current in the source-localized somatosensory cortex during sensory conflict when the finger directly touched the surface. This finding supports the hypothesis that, in response to mirror-reversed visual feedback, the central nervous system selectively gated task-irrelevant somatosensory inputs, thereby mitigating, though not entirely resolving, the visuo-somatosensory conflict. Together, our results emphasize touch’s involvement in movement control over a surface, challenging the notion that vision predominantly governs goal-directed hand or finger movements.

SeminarNeuroscienceRecording

Against cortical reorganisation: lessons from deprivation following hand loss

Tamar Makin
Cambridge University
Apr 10, 2025
SeminarNeuroscience

Structural & Functional Neuroplasticity in Children with Hemiplegia

Christos Papadelis
University of Texas at Arlington
Feb 21, 2025

About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.

SeminarNeuroscience

Mouse Motor Cortex Circuits and Roles in Oromanual Behavior

Gordon Shepherd
Northwestern University
Jan 14, 2025

I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.

SeminarNeuroscience

Learning representations of specifics and generalities over time

Anna Schapiro
University of Pennsylvania
Apr 12, 2024

There is a fundamental tension between storing discrete traces of individual experiences, which allows recall of particular moments in our past without interference, and extracting regularities across these experiences, which supports generalization and prediction in similar situations in the future. One influential proposal for how the brain resolves this tension is that it separates the processes anatomically into Complementary Learning Systems, with the hippocampus rapidly encoding individual episodes and the neocortex slowly extracting regularities over days, months, and years. But this does not explain our ability to learn and generalize from new regularities in our environment quickly, often within minutes. We have put forward a neural network model of the hippocampus that suggests that the hippocampus itself may contain complementary learning systems, with one pathway specializing in the rapid learning of regularities and a separate pathway handling the region’s classic episodic memory functions. This proposal has broad implications for how we learn and represent novel information of specific and generalized types, which we test across statistical learning, inference, and category learning paradigms. We also explore how this system interacts with slower-learning neocortical memory systems, with empirical and modeling investigations into how the hippocampus shapes neocortical representations during sleep. Together, the work helps us understand how structured information in our environment is initially encoded and how it then transforms over time.

SeminarNeuroscience

Stability of visual processing in passive and active vision

Tobias Rose
Institute of Experimental Epileptology and Cognition Research University of Bonn Medical Center
Mar 28, 2024

The visual system faces a dual challenge. On the one hand, features of the natural visual environment should be stably processed - irrespective of ongoing wiring changes, representational drift, and behavior. On the other hand, eye, head, and body motion require a robust integration of pose and gaze shifts in visual computations for a stable perception of the world. We address these dimensions of stable visual processing by studying the circuit mechanism of long-term representational stability, focusing on the role of plasticity, network structure, experience, and behavioral state while recording large-scale neuronal activity with miniature two-photon microscopy.

SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 8, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 21, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscienceRecording

State-of-the-Art Spike Sorting with SpikeInterface

Samuel Garcia and Alessio Buccino
CRNS, Lyon, France and Allen Institute for Neural Dynamics, Seattle, USA
Nov 7, 2023

This webinar will focus on spike sorting analysis with SpikeInterface, an open-source framework for the analysis of extracellular electrophysiology data. After a brief introduction of the project (~30 mins) highlighting the basics of the SpikeInterface software and advanced features (e.g., data compression, quality metrics, drift correction, cloud visualization), we will have an extensive hands-on tutorial (~90 mins) showing how to use SpikeInterface in a real-world scenario. After attending the webinar, you will: (1) have a global overview of the different steps involved in a processing pipeline; (2) know how to write a complete analysis pipeline with SpikeInterface.

SeminarNeuroscienceRecording

Location, time and type of epileptic activity influence how sleep modulates epilepsy

Birgit Frauscher
Duke
Oct 11, 2023

Sleep and epilepsy are tightly interconnected: On the one hand disturbed sleep is known to negatively affect epilepsy, whereas on the other hand epilepsy negatively impacts sleep. In this talk, we leverage on the unique opportunity provided by simultaneous stereo-EEG and sleep recordings to disentangle these relationships. We will discuss latest evidence on if anatomy (temporal vs. extratemporal), time (early vs. late sleep), and type of epileptic activity (ictal vs. interictal) influence how epileptic activity is modulated by sleep. After this talk, attendees will have a more nuanced understanding of the contributions of location, time and type of epileptic activity in the relationship between sleep and epilepsy.

SeminarNeuroscience

Movement planning as a window into hierarchical motor control

Katja Kornysheva
Centre for Human Brain (CHBH) at the University of Birmingham, UK
Jun 15, 2023

The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.

SeminarNeuroscience

Investigating semantics above and beyond language: a clinical and cognitive neuroscience approach

Valentina Borghesani
University of Geneva, Switzerland & NCCR Evolving Language
Mar 16, 2023

The ability to build, store, and manipulate semantic representations lies at the core of all our (inter)actions. Combining evidence from cognitive neuroimaging and experimental neuropsychology, I study the neurocognitive correlates of semantic knowledge in relation to other cognitive functions, chiefly language. In this talk, I will start by reviewing neuroimaging findings supporting the idea that semantic representations are encoded in distributed yet specialized cortical areas (1), and rapidly recovered (2) according to the requirement of the task at hand (3). I will then focus on studies conducted in neurodegenerative patients, offering a unique window on the key role played by a structurally and functionally heterogeneous piece of cortex: the anterior temporal lobe (4,5). I will present pathological, neuroimaging, cognitive, and behavioral data illustrating how damages to language-related networks can affect or spare semantic knowledge as well as possible paths to functional compensation (6,7). Time permitting, we will discuss the neurocognitive dissociation between nouns and verbs (8) and how verb production is differentially impacted by specific language impairments (9).

SeminarNeuroscience

Maths, AI and Neuroscience Meeting Stockholm

Roshan Cools, Alain Destexhe, Upi Bhalla, Vijay Balasubramnian, Dinos Meletis, Richard Naud
Dec 15, 2022

To understand brain function and develop artificial general intelligence it has become abundantly clear that there should be a close interaction among Neuroscience, machine learning and mathematics. There is a general hope that understanding the brain function will provide us with more powerful machine learning algorithms. On the other hand advances in machine learning are now providing the much needed tools to not only analyse brain activity data but also to design better experiments to expose brain function. Both neuroscience and machine learning explicitly or implicitly deal with high dimensional data and systems. Mathematics can provide powerful new tools to understand and quantify the dynamics of biological and artificial systems as they generate behavior that may be perceived as intelligent.

SeminarNeuroscienceRecording

Protocols for the social transfer of pain and analgesia in mice

Monique L. Smith
UCSD
Dec 8, 2022

We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund’s adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. Highlights • A protocol for the rapid social transfer of pain in rodents • Detailed requirements for handling and housing conditions • Procedures for habituation, social interaction, and pain induction and assessment • Adaptable for social transfer of analgesia and may be used to study empathy in rodents https://doi.org/10.1016/j.xpro.2022.101756

SeminarNeuroscience

Experimental Neuroscience Bootcamp

Adam Kampff
Voight Kampff, London, UK
Dec 5, 2022

This course provides a fundamental foundation in the modern techniques of experimental neuroscience. It introduces the essentials of sensors, motor control, microcontrollers, programming, data analysis, and machine learning by guiding students through the “hands on” construction of an increasingly capable robot. In parallel, related concepts in neuroscience are introduced as nature’s solution to the challenges students encounter while designing and building their own intelligent system.

SeminarNeuroscienceRecording

Modelling metaphor comprehension as a form of analogizing

Gerard Steen
University of Amsterdam
Nov 30, 2022

What do people do when they comprehend language in discourse? According to many psychologists, they build and maintain cognitive representations of utterances in four complementary mental models for discourse that interact with each other: the surface text, the text base, the situation model, and the context model. When people encounter metaphors in these utterances, they need to incorporate them into each of these mental representations for the discourse. Since influential metaphor theories define metaphor as a form of (figurative) analogy, involving cross-domain mapping of a smaller or greater extent, the general expectation has been that metaphor comprehension is also based on analogizing. This expectation, however, has been partly borne out by the data, but not completely. There is no one-to-one relationship between metaphor as (conceptual) structure (analogy) and metaphor as (psychological) process (analogizing). According to Deliberate Metaphor Theory (DMT), only some metaphors are handled by analogy. Instead, most metaphors are presumably handled by lexical disambiguation. This is a hypothesis that brings together most metaphor research in a provocatively new way: it means that most metaphors are not processed metaphorically, which produces a paradox of metaphor. In this talk I will sketch out how this paradox arises and how it can be resolved by a new version of DMT, which I have described in my forthcoming book Slowing metaphor down: Updating Deliberate Metaphor Theory (currently under review). In this theory, the distinction between, but also the relation between, analogy in metaphorical structure versus analogy in metaphorical process is of central importance.

SeminarNeuroscienceRecording

Memory-enriched computation and learning in spiking neural networks through Hebbian plasticity

Thomas Limbacher
TU Graz
Nov 9, 2022

Memory is a key component of biological neural systems that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning. Here, we propose that Hebbian plasticity is fundamental for computations in biological neural systems. We introduce a novel spiking neural network (SNN) architecture that is enriched by Hebbian synaptic plasticity. We experimentally show that our memory-equipped SNN model outperforms state-of-the-art deep learning mechanisms in a sequential pattern-memorization task, as well as demonstrate superior out-of-distribution generalization capabilities compared to these models. We further show that our model can be successfully applied to one-shot learning and classification of handwritten characters, improving over the state-of-the-art SNN model. We also demonstrate the capability of our model to learn associations for audio to image synthesis from spoken and handwritten digits. Our SNN model further presents a novel solution to a variety of cognitive question answering tasks from a standard benchmark, achieving comparable performance to both memory-augmented ANN and SNN-based state-of-the-art solutions to this problem. Finally we demonstrate that our model is able to learn from rewards on an episodic reinforcement learning task and attain near-optimal strategy on a memory-based card game. Hence, our results show that Hebbian enrichment renders spiking neural networks surprisingly versatile in terms of their computational as well as learning capabilities. Since local Hebbian plasticity can easily be implemented in neuromorphic hardware, this also suggests that powerful cognitive neuromorphic systems can be build based on this principle.

SeminarNeuroscienceRecording

Learning Relational Rules from Rewards

Guillermo Puebla
University of Bristol
Oct 13, 2022

Humans perceive the world in terms of objects and relations between them. In fact, for any given pair of objects, there is a myriad of relations that apply to them. How does the cognitive system learn which relations are useful to characterize the task at hand? And how can it use these representations to build a relational policy to interact effectively with the environment? In this paper we propose that this problem can be understood through the lens of a sub-field of symbolic machine learning called relational reinforcement learning (RRL). To demonstrate the potential of our approach, we build a simple model of relational policy learning based on a function approximator developed in RRL. We trained and tested our model in three Atari games that required to consider an increasingly number of potential relations: Breakout, Pong and Demon Attack. In each game, our model was able to select adequate relational representations and build a relational policy incrementally. We discuss the relationship between our model with models of relational and analogical reasoning, as well as its limitations and future directions of research.

SeminarNeuroscience

Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex

Juan Burrone
King’s College London
Sep 28, 2022

GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.

SeminarNeuroscienceRecording

Handling data in your in vivo studies

Kaitlyn Hair
University of Edinburgh
Jul 20, 2022
SeminarNeuroscience

Cell-type specific genomics and transcriptomics of HIV in the brain

Amara Plaza-Jennings
Icahn School of Medicine at Mt. Sinai, NYC
Jun 22, 2022

Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.

SeminarNeuroscienceRecording

Where do problem spaces come from? On metaphors and representational change

Benjamin Angerer
Osnabrück University
Jun 15, 2022

The challenges of problem solving do not exclusively lie in how to perform heuristic search, but they begin with how we understand a given task: How to cognitively represent the task domain and its components can determine how quickly someone is able to progress towards a solution, whether advanced strategies can be discovered, or even whether a solution is found at all. While this challenge of constructing and changing representations has been acknowledged early on in problem solving research, for the most part it has been sidestepped by focussing on simple, well-defined problems whose representation is almost fully determined by the task instructions. Thus, the established theory of problem solving as heuristic search in problem spaces has little to say on this. In this talk, I will present a study designed to explore this issue, by virtue of finding and refining an adequate problem representation being its main challenge. In this exploratory case study, it was investigated how pairs of participants acquaint themselves with a complex spatial transformation task in the domain of iterated mental paper folding over the course of several days. Participants have to understand the geometry of edges which occurs when repeatedly mentally folding a sheet of paper in alternating directions without the use of external aids. Faced with the difficulty of handling increasingly complex folds in light of limited cognitive capacity, participants are forced to look for ways in which to represent folds more efficiently. In a qualitative analysis of video recordings of the participants' behaviour, the development of their conceptualisation of the task domain was traced over the course of the study, focussing especially on their use of gesture and the spontaneous occurrence and use of metaphors in the construction of new representations. Based on these observations, I will conclude the talk with several theoretical speculations regarding the roles of metaphor and cognitive capacity in representational change.

SeminarNeuroscience

Adaptive neural network classifier for decoding finger movements

Alexey Zabolotniy
HSE University
Jun 2, 2022

While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.

SeminarNeuroscience

Unchanging and changing: hardwired taste circuits and their top-down control

Hao Jin
Columbia
May 25, 2022

The taste system detects 5 major categories of ethologically relevant stimuli (sweet, bitter, umami, sour and salt) and accordingly elicits acceptance or avoidance responses. While these taste responses are innate, the taste system retains a remarkable flexibility in response to changing external and internal contexts. Taste chemicals are first recognized by dedicated taste receptor cells (TRCs) and then transmitted to the cortex via a multi-station relay. I reasoned that if I could identify taste neural substrates along this pathway, it would provide an entry to decipher how taste signals are encoded to drive innate response and modulated to facilitate adaptive response. Given the innate nature of taste responses, these neural substrates should be genetically identifiable. I therefore exploited single-cell RNA sequencing to isolate molecular markers defining taste qualities in the taste ganglion and the nucleus of the solitary tract (NST) in the brainstem, the two stations transmitting taste signals from TRCs to the brain. How taste information propagates from the ganglion to the brain is highly debated (i.e., does taste information travel in labeled-lines?). Leveraging these genetic handles, I demonstrated one-to-one correspondence between ganglion and NST neurons coding for the same taste. Importantly, inactivating one ‘line’ did not affect responses to any other taste stimuli. These results clearly showed that taste information is transmitted to the brain via labeled lines. But are these labeled lines aptly adapted to the internal state and external environment? I studied the modulation of taste signals by conflicting taste qualities in the concurrence of sweet and bitter to understand how adaptive taste responses emerge from hardwired taste circuits. Using functional imaging, anatomical tracing and circuit mapping, I found that bitter signals suppress sweet signals in the NST via top-down modulation by taste cortex and amygdala of NST taste signals. While the bitter cortical field provides direct feedback onto the NST to amplify incoming bitter signals, it exerts negative feedback via amygdala onto the incoming sweet signal in the NST. By manipulating this feedback circuit, I showed that this top-down control is functionally required for bitter evoked suppression of sweet taste. These results illustrate how the taste system uses dedicated feedback lines to finely regulate innate behavioral responses and may have implications for the context-dependent modulation of hardwired circuits in general.

SeminarNeuroscience

Brain and Mind: Who is the Puppet and who the Puppeteer?

George Paxinos
May 11, 2022

If the mind controls the brain, then there is free will and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no free will, no praise, no punishment and no purgatory. In this webinar, Professor George Paxinos will discuss his highly respected work on the construction of human and experimental animal brain atlases. He has discovered 94 brain regions, 64 homologies and published 58 books. His first book, The Rat Brain in Stereotaxic Coordinates, is the most cited publication in neuroscience and, for three decades, the third most cited book in science. Professor Paxinos will also present his recently published novel, A River Divided, which was 21 years in the making. Neuroscience principles were used in the formation of charters, such as those related to the mind, soul, free will and consciousness. Environmental issues are at the heart of the novel, including the question of whether the brain is the right ‘size’ for survival. Professor Paxinos studied at Berkeley, McGill and Yale and is now Scientia Professor of Medical Sciences at Neuroscience Research Australia and The University of New South Wales in Sydney.

SeminarNeuroscienceRecording

Visualization and manipulation of our perception and imagery by BCI

Takufumi Yanagisawa
Osaka University
Apr 1, 2022

We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.

SeminarNeuroscienceRecording

Cross-modality imaging of the neural systems that support executive functions

Yaara Erez
Affiliate MRC Cognition and Brain Sciences Unit, University of Cambridge
Mar 1, 2022

Executive functions refer to a collection of mental processes such as attention, planning and problem solving, supported by a frontoparietal distributed brain network. These functions are essential for everyday life. Specifically in the context of patients with brain tumours there is a need to preserve them in order to enable good quality of life for patients. During surgeries for the removal of a brain tumour, the aim is to remove as much as possible of the tumour and at the same time prevent damage to the areas around it to preserve function and enable good quality of life for patients. In many cases, functional mapping is conducted during an awake surgery in order to identify areas critical for certain functions and avoid their surgical resection. While mapping is routinely done for functions such as movement and language, mapping executive functions is more challenging. Despite growing recognition in the importance of these functions for patient well-being in recent years, only a handful of studies addressed their intraoperative mapping. In the talk, I will present our new approach for mapping executive function areas using electrocorticography during awake brain surgery. These results will be complemented by neuroimaging data from healthy volunteers, directed at reliably localizing executive function regions in individuals using fMRI. I will also discuss more broadly challenges ofß using neuroimaging for neurosurgical applications. We aim to advance cross-modality neuroimaging of cognitive function which is pivotal to patient-tailored surgical interventions, and will ultimately lead to improved clinical outcomes.

SeminarNeuroscience

Body Representation in Virtual Reality

Mel Slater
Universitat de Barcelona
Jan 12, 2022

How the brain represents the body is a fundamental question in cognitive neuroscience. Experimental studies are difficult because ‘the body is always there’ (William James). In recent years immersive virtual reality techniques have been introduced that deliver apparent changes to the body extending earlier techniques such as the rubber hand illusion, or substituting the whole body by a virtual one visually collocated with the real body, and seen from a normal first person perspective. This talk will introduce these techniques, and concentrate on how changing the body can change the mind and behaviour, especially in the context of combatting aggression based on gender or race.

SeminarNeuroscienceRecording

Human memory: mathematical models and experiments

Misha Tsodyks
Weizmann Institute, Institute for Advanced Study
Jan 5, 2022

I will present my recent work on mathematical modeling of human memory. I will argue that memory recall of random lists of items is governed by the universal algorithm resulting in the analytical relation between the number of items in memory and the number of items that can be successfully recalled. The retention of items in memory on the other hand is not universal and differs for different types of items being remembered, in particular retention curves for words and sketches is different even when sketches are made to only carry information about an object being drawn. I will discuss the putative reasons for these observations and introduce the phenomenological model predicting retention curves.

SeminarNeuroscienceRecording

Brain and Mind: Who is the Puppet and who the Puppeteer?

George Paxinos
The University of New South Wales
Dec 17, 2021

If the mind controls the brain, then there is FREE WILL and its corollaries, dignity and responsibility. You are king in your skull-sized kingdom and the architect of your destiny. If, on the other hand, the brain controls the mind, an incendiary conclusion follows: There can be no FREE WILL, no praise, no punishment and no purgatory. There will be a presentation of the speaker’s novel which, inter alia, is concerned with this question: 21 year in the making this is the first presentation of A River Divided (environmental genre)

SeminarNeuroscienceRecording

Neural signature for accumulated evidence underlying temporal decisions

Nir Ofir
The Hebrew University of Jerusalem
Dec 16, 2021

Cognitive models of timing often include a pacemaker analogue whose ticks are accumulated to form an internal representation of time, and a threshold that determines when a target duration has elapsed. However, clear EEG manifestations of these abstract components have not yet been identified. We measured the EEG of subjects while they performed a temporal bisection task in which they were requested to categorize visual stimuli as short or long in duration. We report an ERP component whose amplitude depends monotonically on the stimulus duration. The relation of the ERP amplitude and stimulus duration can be captured by a simple model, adapted from a known drift-diffusion model for time perception. It includes a noisy accumulator that starts with the stimulus onset and a threshold. If the threshold is reached during stimulus presentation, the stimulus is categorized as "long", otherwise the stimulus is categorized as "short". At the stimulus offset, a response proportional to the distance to the threshold is emitted. This simple model has two parameters that fit both the behavior and ERP amplitudes recorded in the task. Two subsequent experiments replicate and extend this finding to another modality (touch) as well as to different time ranges (subsecond and suprasecond), establishing the described ERP component as a useful handle on the cognitive processes involved in temporal decisions.

SeminarNeuroscience

Maths, AI and Neuroscience meeting

Tim Vogels, Mickey London, Anita Disney, Yonina Eldar, Partha Mitra, Yi Ma
Dec 13, 2021

To understand brain function and develop artificial general intelligence it has become abundantly clear that there should be a close interaction among Neuroscience, machine learning and mathematics. There is a general hope that understanding the brain function will provide us with more powerful machine learning algorithms. On the other hand advances in machine learning are now providing the much needed tools to not only analyse brain activity data but also to design better experiments to expose brain function. Both neuroscience and machine learning explicitly or implicitly deal with high dimensional data and systems. Mathematics can provide powerful new tools to understand and quantify the dynamics of biological and artificial systems as they generate behavior that may be perceived as intelligent. In this meeting we bring together experts from Mathematics, Artificial Intelligence and Neuroscience for a three day long hybrid meeting. We will have talks on mathematical tools in particular Topology to understand high dimensional data, explainable AI, how AI can help neuroscience and to what extent the brain may be using algorithms similar to the ones used in modern machine learning. Finally we will wrap up with a discussion on some aspects of neural hardware that may not have been considered in machine learning.

SeminarNeuroscienceRecording

NMC4 Short Talk: Decoding finger movements from human posterior parietal cortex

Charles Guan
California Institute of Technology
Dec 1, 2021

Restoring hand function is a top priority for individuals with tetraplegia. This challenge motivates considerable research on brain-computer interfaces (BCIs), which bypass damaged neural pathways to control paralyzed or prosthetic limbs. Here, we demonstrate the BCI control of a prosthetic hand using intracortical recordings from the posterior parietal cortex (PPC). As part of an ongoing clinical trial, two participants with cervical spinal cord injury were each implanted with a 96-channel array in the left PPC. Across four sessions each, we recorded neural activity while they attempted to press individual fingers of the contralateral (right) hand. Single neurons modulated selectively for different finger movements. Offline, we accurately classified finger movements from neural firing rates using linear discriminant analysis (LDA) with cross-validation (accuracy = 90%; chance = 17%). Finally, the participants used the neural classifier online to control all five fingers of a BCI hand. Online control accuracy (86%; chance = 17%) exceeded previous state-of-the-art finger BCIs. Furthermore, offline, we could classify both flexion and extension of the right fingers, as well as flexion of all ten fingers. Our results indicate that neural recordings from PPC can be used to control prosthetic fingers, which may help contribute to a hand restoration strategy for people with tetraplegia.

SeminarNeuroscienceRecording

Conflict in Multisensory Perception

Salvador Soto.Faraco
Universitat Pompeu Fabra
Nov 11, 2021

Multisensory perception is often studied through the effects of inter-sensory conflict, such as in the McGurk effect, the Ventriloquist illusion, and the Rubber Hand Illusion. Moreover, Bayesian approaches to cue fusion and causal inference overwhelmingly draw on cross-modal conflict to measure and to model multisensory perception. Given the prevalence of conflict, it is remarkable that accounts of multisensory perception have so far neglected the theory of conflict monitoring and cognitive control, established about twenty years ago. I hope to make a case for the role of conflict monitoring and resolution during multisensory perception. To this end, I will present EEG and fMRI data showing that cross-modal conflict in speech, resulting in either integration or segregation, triggers neural mechanisms of conflict detection and resolution. I will also present data supporting a role of these mechanisms during perceptual conflict in general, using Binocular Rivalry, surrealistic imagery, and cinema. Based on this preliminary evidence, I will argue that it is worth considering the potential role of conflict in multisensory perception and its incorporation in a causal inference framework. Finally, I will raise some potential problems associated with this proposal.

SeminarNeuroscience

Careers in neuroscience (and beyond!)

Emma Soopramanien
Queen Mary University London
Jul 21, 2021

Join us to hear about degrees and careers in neuroscience, what it’s like to be a neuroscientist, the wide range of career options open to you after a neuroscience degree, first-hand examples of career paths in neuroscience, and some tips and thoughts to help you in your own careers. This free and friendly webinar will give you the chance to ask questions from people with different experiences in neuroscience: - Emma Soopramanien, the BNA Committee Representative for Students and Early Career Researchers – Emma has just completed her undergraduate course in neuroscience, and will be hosting the webinar. - Professor Anthony Isles, BNA Trustee – Anthony is a professor at Cardiff University, where he researches epigenetic mechanisms of brain and behaviour and how they contribute to neurodevelopmental and neuropsychiatric disorders, as well as teaching undergraduate and postgraduate students. He will talk about how he came to be a neuroscientist researcher and ways into neuroscience. - Dr Anne Cooke, BNA Chief Executive – Anne studied physiology and neuroscience at university and carried out research into neuronal communication, before then following a career path with roles in academia and industry, and now as CE at the BNA. Anne will describe her own career in neuroscience, as well as some of the many other options open to you after a neuroscience degree.

SeminarNeuroscienceRecording

Active sleep in flies: the dawn of consciousness

Bruno van Swinderen
University of Queensland
Jul 19, 2021

The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising and this typically evokes prediction error signatures in animal brains. In humans such mismatched expectations are often associated with an emotional response as well. Appropriate emotional responses are understood to be important for memory consolidation, suggesting that valence cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely is probably also maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain functions as an ongoing tug-of-war between prediction and surprise suggests a compelling new way to study and understand the evolution of consciousness in animals. I will present approaches to studying attention and prediction in the tiny brain of the fruit fly, Drosophila melanogaster. I will discuss how an ‘active’ sleep stage (termed rapid eye movement – REM – sleep in mammals) may have evolved in the first animal brains as a mechanism for optimizing prediction in motile creatures confronted with constantly changing environments. A role for REM sleep in emotional regulation could thus be better understood as an ancient sleep function that evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness.

SeminarNeuroscience

Inclusive Human Participant Research

Pollyanna Sheehan, Arnelle Etiennt
University of Bristol, Carnegie Mellon University
Jun 23, 2021

Human participant research is somehow both antithetical and complementary to science. On the one hand, working with human participants provides incredibly rich and complex data with ‘real-world’ ecological validity. On the other, this richness is due to the incredible number of variables which uncontrollably become intertwined with your research interest, potentially limiting the conclusions you can draw from your work. Historical over-representation of white men as research participants, coupled with often overly-stringent exclusion criteria has led to a diversity crisis in human participant research. For our research to be truly inclusive, representative and generalisable to the rest of the population, our data must be collected from diverse individuals. This session will explore common barriers to diversity in studies with human participants, and will provide guidance on how to make sure your own research is accessible and inclusive.

SeminarNeuroscience

Towards a neurally mechanistic understanding of visual cognition

Kohitij Kar
Massachusetts Institute of Technology
Jun 14, 2021

I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!

SeminarNeuroscienceRecording

Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses

Willem Wybo
Morrison lab, Forschungszentrum Jülich, Germany
Jun 10, 2021

There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.

SeminarNeuroscience

Handling multiple memories in the hippocampus network

David Dupret
Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
Jun 10, 2021
SeminarNeuroscienceRecording

Prof. Humphries reads from "The Spike" 📖

Mark Humphries
University of Nottingham
Jun 8, 2021

We see the last cookie in the box and think, can I take that? We reach a hand out. In the 2.1 seconds that this impulse travels through our brain, billions of neurons communicate with one another, sending blips of voltage through our sensory and motor regions. Neuroscientists call these blips “spikes.” Spikes enable us to do everything: talk, eat, run, see, plan, and decide. In The Spike, Mark Humphries takes readers on the epic journey of a spike through a single, brief reaction. In vivid language, Humphries tells the story of what happens in our brain, what we know about spikes, and what we still have left to understand about them. Drawing on decades of research in neuroscience, Humphries explores how spikes are born, how they are transmitted, and how they lead us to action. He dives into previously unanswered mysteries: Why are most neurons silent? What causes neurons to fire spikes spontaneously, without input from other neurons or the outside world? Why do most spikes fail to reach any destination? Humphries presents a new vision of the brain, one where fundamental computations are carried out by spontaneous spikes that predict what will happen in the world, helping us to perceive, decide, and react quickly enough for our survival. Traversing neuroscience’s expansive terrain, The Spike follows a single electrical response to illuminate how our extraordinary brains work.

SeminarNeuroscienceRecording

Experience-independent brain development in perception and action systems

Ella Striem-Amit
Georgetown University
Jun 3, 2021
SeminarNeuroscienceRecording

A theory for Hebbian learning in recurrent E-I networks

Samuel Eckmann
Gjorgjieva lab, Max Planck Institute for Brain Research, Frankfurt, Germany
May 20, 2021

The Stabilized Supralinear Network is a model of recurrently connected excitatory (E) and inhibitory (I) neurons with a supralinear input-output relation. It can explain cortical computations such as response normalization and inhibitory stabilization. However, the network's connectivity is designed by hand, based on experimental measurements. How the recurrent synaptic weights can be learned from the sensory input statistics in a biologically plausible way is unknown. Earlier theoretical work on plasticity focused on single neurons and the balance of excitation and inhibition but did not consider the simultaneous plasticity of recurrent synapses and the formation of receptive fields. Here we present a recurrent E-I network model where all synaptic connections are simultaneously plastic, and E neurons self-stabilize by recruiting co-tuned inhibition. Motivated by experimental results, we employ a local Hebbian plasticity rule with multiplicative normalization for E and I synapses. We develop a theoretical framework that explains how plasticity enables inhibition balanced excitatory receptive fields that match experimental results. We show analytically that sufficiently strong inhibition allows neurons' receptive fields to decorrelate and distribute themselves across the stimulus space. For strong recurrent excitation, the network becomes stabilized by inhibition, which prevents unconstrained self-excitation. In this regime, external inputs integrate sublinearly. As in the Stabilized Supralinear Network, this results in response normalization and winner-takes-all dynamics: when two competing stimuli are presented, the network response is dominated by the stronger stimulus while the weaker stimulus is suppressed. In summary, we present a biologically plausible theoretical framework to model plasticity in fully plastic recurrent E-I networks. While the connectivity is derived from the sensory input statistics, the circuit performs meaningful computations. Our work provides a mathematical framework of plasticity in recurrent networks, which has previously only been studied numerically and can serve as the basis for a new generation of brain-inspired unsupervised machine learning algorithms.

ePosterNeuroscience

3D Movement Analysis of the Ruhr Hand Motion Catalog of Human Center-Out Transport Trajectories

Tim Sziburis, Susanne Blex, Ioannis Iossifidis

Bernstein Conference 2024

ePosterNeuroscience

Neural Representation of Hand Gestures in Human Premotor Cortex

Nishal Shah,Donald Avansino,Frank Willett,Jaimie Henderson*,Krishna Shenoy

COSYNE 2022

ePosterNeuroscience

Neural Representation of Hand Gestures in Human Premotor Cortex

Nishal Shah,Donald Avansino,Frank Willett,Jaimie Henderson*,Krishna Shenoy

COSYNE 2022

ePosterNeuroscience

Altered lateralized readiness potential in stroke patients during healthy and paretic hand movements

Aleksandra Medvedeva, Nikolay Syrov, Yana Alieva, Lev Yakovlev, Daria Petrova, Galina Ivanova, Alexander Kaplan, Mikhail Lebedev

FENS Forum 2024

ePosterNeuroscience

Alternative splicing of Cav2.1 EF-hand contributes to the tightness of calcium influx-neurotransmitter release coupling at mouse cerebellar synapses

Kohgaku Eguchi, Le Monnier Elodie, Ryuichi Shigemoto

FENS Forum 2024

ePosterNeuroscience

Dysregulation of FLVCR1-dependent mitochondrial calcium handling in neural stem cells causes congenital hydrocephalus

Diletta Isabella Zanin Venturini, Francesca Bertino, Dibyanti Mukherjee, Massimo Bonora, Christoph Bagowski, Jeannette Nardelli, Livia Metani, Diego Chianese, Nicolas Santander Grez, Iris Chiara Salaroglio, Andreas Hentschel, Elisa Quarta, Tullio Genova, Arpana Arjun McKinney, Annalucia Allocco, Veronica Fiorito, Francesco De Giorgio, Sara Petrillo, Giorgia Ammirata, Evan Dennis, Garrett Allington, Felicitas Maier, Moneef Shoukier, Karl-Philipp Gloning, Luca Munaron, Federico Mussano, Fiorella Altruda, Georgia Panagiotakos, Kristopher T. Kahle, Pierre Gressens, Chiara Riganti, Paolo Pinton, Andreas Roos, Thomas Arnold, Emanuela Tolosano, Deborah Chiabrando

FENS Forum 2024

ePosterNeuroscience

Effects of early handling and sex on cognitive resilience in APP/PS1 mice

Maria Carrigan, Jeniffer Sanguino-Gómez, Wiesje M. van der Flier, Paul J. Lucassen, Rik Ossenkoppele, Harm J. Krugers

FENS Forum 2024

ePosterNeuroscience

Function determination for structural domains of secretagogin, an EF-hand Ca2+-sensor protein

Anika Raabgrund, Robert Schnell, Thomas Hökfelt, Tibor Harkany, Zsofia Hevesi

FENS Forum 2024

ePosterNeuroscience

Hand preference switching with intra- and inter-hemispheric cholinergic modulation

Kazuki Okamoto, Yasuhiro Tanaka, Shigeki Kato, Kazuto Kobayashi, Masato Koike, Hiroyuki Hioki

FENS Forum 2024

ePosterNeuroscience

HOISDF: Estimating hand-object interactions from a single camera via global signed distance fields

Haozhe Qi, Chen Zhao, Mthieu Salzman, Alexander Mathis

FENS Forum 2024

ePosterNeuroscience

The 3Hs initiative: Handling, housing and habituation

Megan Jackson, Justyna Hinchcliffe, Julia Bartlett, Jennifer Davies, Emma Robinson

FENS Forum 2024

ePosterNeuroscience

Morphological and physiological features of chandelier cells in the prefrontal cortex in two transgenic mouse lines

Zsuzsanna Fekete, Petra Nagy-Pál, Zsófia Reéb, Judit Veres, Norbert Hájos

FENS Forum 2024

ePosterNeuroscience

Naltrexone affects both firsthand and empathic pain: A pharmacological within-subjects study

Julia T. Braunstein, Markus Rütgen, Claus Lamm

FENS Forum 2024

ePosterNeuroscience

Neonatal handling age-dependently modulates social interaction, prepulse inhibition, and frontocortical expression of synaptic and neuroplasticity markers in a genetic rat model of schizophrenia-relevant features

Natalia Peralta, Toni Cañete, Daniel Sampedro-Viana, Adolf Tobeña, Ignasi Oliveras, Cristóbal Río-Álamos, Susana Aznar, Alberto Fernández-Teruel

FENS Forum 2024

ePosterNeuroscience

Neuronal regeneration to restore hand and arm functions after paralysis

Achilleas Laskaratos, Viviana Aureli, Alexandra de Coucy, Inssia Dewany, Elaine Soriano, Remi Hudelle, Matthieu Gautier, Alan Teo, Nicola Regazzi, Nick James, Quentin Barraud, Michael Sofroniew, Jocelyne Bloch, Jordan Squair, Mark Anderson, Gregoire Courtine

FENS Forum 2024

HAND coverage

65 items

Seminar50
ePoster15
Domain spotlight

Explore how HAND research is advancing inside Neuro.

Visit domain