← Back

Hippocampal Formation

Topic spotlight
TopicNeuro

hippocampal formation

Discover seminars, jobs, and research tagged with hippocampal formation across Neuro.
6 curated items6 Seminars
Updated about 3 years ago
6 items · hippocampal formation

Latest

6 results
SeminarNeuroscienceRecording

Learning predictive maps in the brain for spatial navigation

William de Cothi
Barry lab, UCL
Oct 12, 2022

The predictive map hypothesis provides a promising framework to model representations in the hippocampal formation. I will introduce a tractable implementation of a predictive map called the successor representation (SR), before presenting data showing that rats and humans display SR-like navigational choices on a novel open-field maze. Next, I will show how such a predictive map could be implemented using spatial representations found in the hippocampal formation, before finally presenting how such learning might be well approximated by phenomena that exist in the spatial memory system - namely spike-timing dependent plasticity and theta phase precession.

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 11, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscience

Using extra-hippocampal cognitive maps for goal-directed spatial navigation

Hiroshi Ito
Max Planck Institute for Brain Research
Jul 7, 2021

Goal-directed navigation requires precise estimates of spatial relationships between current position and future goal, as well as planning of an associated route or action. While neurons in the hippocampal formation can represent the animal’s position and nearby trajectories, their role in determining the animal’s destination or action has been questioned. We thus hypothesize that brain regions outside the hippocampal formation may play complementary roles in navigation, particularly for guiding goal-directed behaviours based on the brain’s internal cognitive map. In this seminar, I will first describe a subpopulation of neurons in the retrosplenial cortex (RSC) that increase their firing when the animal approaches environmental boundaries, such as walls or edges. This boundary coding is independent of direct visual or tactile sensation but instead depends on inputs from the medial entorhinal cortex (MEC) that contains spatial tuning cells, such as grid cells or border cells. However, unlike MEC border cells, we found that RSC border cells encode environmental boundaries in a self-centred egocentric coordinate frame, which may allow an animal for efficient avoidance from approaching walls or edges during navigation. I will then discuss whether the brain can possess a precise estimate of remote target location during active environmental exploration. Such a spatial code has not been described in the hippocampal formation. However, we found that neurons in the rat orbitofrontal cortex (OFC) form spatial representations that persistently point to the animal’s subsequent goal destination throughout navigation. This destination coding emerges before navigation onset without direct sensory access to a distal goal, and are maintained via destination-specific neural ensemble dynamics. These findings together suggest key roles for extra-hippocampal regions in spatial navigation, enabling animals to choose appropriate actions toward a desired destination by avoiding possible dangers.

SeminarNeuroscienceRecording

A role for cognitive maps in metaphors and analogy?

Roberto Bottini
University of Trento
Jun 24, 2021

In human and non-human animals, conceptual knowledge is partially organized according to low-dimensional geometries that rely on brain structures and computations involved in spatial representations. Recently, two separate lines of research have investigated cognitive maps, that are associated with the hippocampal formation and are similar to world-centered representations of the environment, and image spaces, that are associated with the parietal cortex and are similar to self-centered spatial relationships. I will suggest that cognitive maps and image spaces may be two manifestations of a more general propensity of the mind to create low-dimensional internal models, and may play a role in analogical reasoning and metaphorical thinking. Finally, I will show some data suggesting that the metaphorical relationship between colors and emotions can be accounted for by the structural alignment of low-dimensional conceptual spaces.

SeminarNeuroscience

Herbert Jasper Lecture

Bruce McNaughton
AIHS Polaris Research Chair at the University of Lethbridge, Alberta, Canada.
Apr 27, 2021

There is a long-standing tension between the notion that the hippocampal formation is essentially a spatial mapping system, and the notion that it plays an essential role in the establishment of episodic memory and the consolidation of such memory into structured knowledge about the world. One theory that resolves this tension is the notion that the hippocampus generates rather arbitrary 'index' codes that serve initially to link attributes of episodic memories that are stored in widely dispersed and only weakly connected neocortical modules. I will show how an essentially 'spatial' coding mechanism, with some tweaks, provides an ideal indexing system and discuss the neural coding strategies that the hippocampus apparently uses to overcome some biological constraints affecting the possibility of shipping the index code out widely to the neocortex. Finally, I will present new data suggesting that the hippocampal index code is indeed transferred to layer II-III of the neocortex.

SeminarNeuroscienceRecording

A metabolic function of the hippocampal sharp wave-ripple

David Tingley
Buzsaki lab, NYU Neuroscience Institute
Apr 21, 2021

The hippocampal formation has been implicated in both cognitive functions as well as the sensing and control of endocrine states. To identify a candidate activity pattern which may link such disparate functions, we simultaneously measured electrophysiological activity from the hippocampus and interstitial glucose concentrations in the body of freely behaving rats. We found that clusters of sharp wave-ripples (SPW-Rs) recorded from both dorsal and ventral hippocampus reliably predicted a decrease in peripheral glucose concentrations within ~10 minutes. This correlation was less dependent on circadian, ultradian, and meal-triggered fluctuations, it could be mimicked with optogenetically induced ripples, and was attenuated by pharmacogenetically suppressing activity of the lateral septum, the major conduit between the hippocampus and subcortical structures. Our findings demonstrate that a novel function of the SPW-R is to modulate peripheral glucose homeostasis and offer a mechanism for the link between sleep disruption and blood glucose dysregulation seen in type 2 diabetes and obesity.

hippocampal formation coverage

6 items

Seminar6
Domain spotlight

Explore how hippocampal formation research is advancing inside Neuro.

Visit domain