TopicNeuroscience

ictogenesis

Latest

SeminarNeuroscienceRecording

Indispensable for generating epileptic seizures: where, when, how?

Yujiang Wang
Newcastle University
Dec 14, 2022

In epilepsy research, a holy grail has been the identification and understanding of the "epileptogenic zone" - operationally defined as the (minimal) area or region of the brain is indispensible for the generation of epileptic seizures. The identification of the epileptogenic zone is particularly important for surgical treatments of focal epilepsy patients, but I will highlight some recent clinical, experimental and theoretical work showing that it is also fundamentally linked with our understanding of epilepsy and seizures. I will conclude with a proposal for an updated understanding of the epileptogenic zone and ictogenesis.

SeminarNeuroscienceRecording

Hidden nature of seizures

Premysl Jiruska
Charles University, Prague
Oct 5, 2022

How seizures emerge from the abnormal dynamics of neural networks within the epileptogenic tissue remains an enigma. Are seizures random events, or do detectable changes in brain dynamics precede them? Are mechanisms of seizure emergence identical at the onset and later stages of epilepsy? Is the risk of seizure occurrence stable, or does it change over time? A myriad of questions about seizure genesis remains to be answered to understand the core principles governing seizure genesis. The last decade has brought unprecedented insights into the complex nature of seizure emergence. It is now believed that seizure onset represents the product of the interactions between the process of a transition to seizure, long-term fluctuations in seizure susceptibility, epileptogenesis, and disease progression. During the lecture, we will review the latest observations about mechanisms of ictogenesis operating at multiple temporal scales. We will show how the latest observations contribute to the formation of a comprehensive theory of seizure genesis, and challenge the traditional perspectives on ictogenesis. Finally, we will discuss how combining conventional approaches with computational modeling, modern techniques of in vivo imaging, and genetic manipulation open prospects for exploration of yet hidden mechanisms of seizure genesis.

SeminarNeuroscienceRecording

NMC4 Short Talk: Resilience through diversity: Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony

Scott Rich
Kremibl Brain Institute
Dec 1, 2021

A myriad of pathological changes associated with epilepsy, including the loss of specific cell types, improper expression of individual ion channels, and synaptic sprouting, can be recast as decreases in cell and circuit heterogeneity. In recent experimental work, we demonstrated that biophysical diversity is a key characteristic of human cortical pyramidal cells, and past theoretical work has shown that neuronal heterogeneity improves a neural circuit’s ability to encode information. Viewed alongside the fact that seizure is an information-poor brain state, these findings motivate the hypothesis that epileptogenesis can be recontextualized as a process where reduction in cellular heterogeneity renders neural circuits less resilient to seizure onset. By comparing whole-cell patch clamp recordings from layer 5 (L5) human cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we present the first direct experimental evidence that a significant reduction in neural heterogeneity accompanies epilepsy. We directly implement experimentally-obtained heterogeneity levels in cortical excitatory-inhibitory (E-I) stochastic spiking network models. Low heterogeneity networks display unique dynamics typified by a sudden transition into a hyper-active and synchronous state paralleling ictogenesis. Mean-field analysis reveals a distinct mathematical structure in these networks distinguished by multi-stability. Furthermore, the mathematically characterized linearizing effect of heterogeneity on input-output response functions explains the counter-intuitive experimentally observed reduction in single-cell excitability in epileptogenic neurons. This joint experimental, computational, and mathematical study showcases that decreased neuronal heterogeneity exists in epileptogenic human cortical tissue, that this difference yields dynamical changes in neural networks paralleling ictogenesis, and that there is a fundamental explanation for these dynamics based in mathematically characterized effects of heterogeneity. These interdisciplinary results provide convincing evidence that biophysical diversity imbues neural circuits with resilience to seizure and a new lens through which to view epilepsy, the most common serious neurological disorder in the world, that could reveal new targets for clinical treatment.

ictogenesis coverage

3 items

Seminar3

Share your knowledge

Know something about ictogenesis? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how ictogenesis research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.