Latest

SeminarNeuroscience

Learning with less labels for medical image segmentation

Mehrtash Harandi
Monash University
Aug 3, 2022

Accurate segmentation of medical images is a key step in developing Computer-Aided Diagnosis (CAD) and automating various clinical tasks such as image-guided interventions. The success of state-of-the-art methods for medical image segmentation is heavily reliant upon the availability of a sizable amount of labelled data. If the required quantity of labelled data for learning cannot be reached, the technology turns out to be fragile. The principle of consensus tells us that as humans, when we are uncertain how to act in a situation, we tend to look to others to determine how to respond. In this webinar, Dr Mehrtash Harandi will show how to model the principle of consensus to learn to segment medical data with limited labelled data. In doing so, we design multiple segmentation models that collaborate with each other to learn from labelled and unlabelled data collectively.

SeminarNeuroscienceRecording

Probabilistic computation in natural vision

Ruben Coen-Cagli
Albert Einstein College of Medicine
Mar 30, 2022

A central goal of vision science is to understand the principles underlying the perception and neural coding of the complex visual environment of our everyday experience. In the visual cortex, foundational work with artificial stimuli, and more recent work combining natural images and deep convolutional neural networks, have revealed much about the tuning of cortical neurons to specific image features. However, a major limitation of this existing work is its focus on single-neuron response strength to isolated images. First, during natural vision, the inputs to cortical neurons are not isolated but rather embedded in a rich spatial and temporal context. Second, the full structure of population activity—including the substantial trial-to-trial variability that is shared among neurons—determines encoded information and, ultimately, perception. In the first part of this talk, I will argue for a normative approach to study encoding of natural images in primary visual cortex (V1), which combines a detailed understanding of the sensory inputs with a theory of how those inputs should be represented. Specifically, we hypothesize that V1 response structure serves to approximate a probabilistic representation optimized to the statistics of natural visual inputs, and that contextual modulation is an integral aspect of achieving this goal. I will present a concrete computational framework that instantiates this hypothesis, and data recorded using multielectrode arrays in macaque V1 to test its predictions. In the second part, I will discuss how we are leveraging this framework to develop deep probabilistic algorithms for natural image and video segmentation.

SeminarNeuroscience

Neural network models of binocular depth perception

Paul Hibbard
University of Essex
Dec 1, 2021

Our visual experience of living in a three-dimensional world is created from the information contained in the two-dimensional images projected into our eyes. The overlapping visual fields of the two eyes mean that their images are highly correlated, and that the small differences that are present represent an important cue to depth. Binocular neurons encode this information in a way that both maximises efficiency and optimises disparity tuning for the depth structures that are found in our natural environment. Neural network models provide a clear account of how these binocular neurons encode the local binocular disparity in images. These models can be expanded to multi-layer models that are sensitive to salient features of scenes, such as the orientations and discontinuities between surfaces. These deep neural network models have also shown the importance of binocular disparity for the segmentation of images into separate objects, in addition to the estimation of distance. These results demonstrate the usefulness of machine learning approaches as a tool for understanding biological vision.

image segmentation coverage

4 items

Seminar4
Domain spotlight

Explore how image segmentation research is advancing inside Neuro.

Visit domain