TopicNeuro

inhibitory connectivity

2 Seminars1 ePoster

Latest

SeminarNeuroscience

From Spiking Predictive Coding to Learning Abstract Object Representation

Prof. Jochen Triesch
Frankfurt Institute for Advanced Studies
Jun 12, 2025

In a first part of the talk, I will present Predictive Coding Light (PCL), a novel unsupervised learning architecture for spiking neural networks. In contrast to conventional predictive coding approaches, which only transmit prediction errors to higher processing stages, PCL learns inhibitory lateral and top-down connectivity to suppress the most predictable spikes and passes a compressed representation of the input to higher processing stages. We show that PCL reproduces a range of biological findings and exhibits a favorable tradeoff between energy consumption and downstream classification performance on challenging benchmarks. A second part of the talk will feature our lab’s efforts to explain how infants and toddlers might learn abstract object representations without supervision. I will present deep learning models that exploit the temporal and multimodal structure of their sensory inputs to learn representations of individual objects, object categories, or abstract super-categories such as „kitchen object“ in a fully unsupervised fashion. These models offer a parsimonious account of how abstract semantic knowledge may be rooted in children's embodied first-person experiences.

SeminarNeuroscience

Inhibitory connectivity and computations in olfaction

Rainer Friedrich
Friedrich Miescher Institute for Biomedical Research
Dec 6, 2021

We use the olfactory system and forebrain of (adult) zebrafish as a model to analyze how relevant information is extracted from sensory inputs, how information is stored in memory circuits, and how sensory inputs inform behavior. A series of recent findings provides evidence that inhibition has not only homeostatic functions in neuronal circuits but makes highly specific, instructive contributions to behaviorally relevant computations in different brain regions. These observations imply that the connectivity among excitatory and inhibitory neurons exhibits essential higher-order structure that cannot be determined without dense network reconstructions. To analyze such connectivity we developed an approach referred to as “dynamical connectomics” that combines 2-photon calcium imaging of neuronal population activity with EM-based dense neuronal circuit reconstruction. In the olfactory bulb, this approach identified specific connectivity among co-tuned cohorts of excitatory and inhibitory neurons that can account for the decorrelation and normalization (“whitening”) of odor representations in this brain region. These results provide a mechanistic explanation for a fundamental neural computation that strictly requires specific network connectivity.

ePosterNeuroscience

Learning dynamics in development-defined microcircuits is rooted in inhibitory connectivity

Roman Huszar, Artem Kirsanov, Griffin Henze, Dhananjay Huilgol, Josh Huang, Gyorgy Buzsaki

COSYNE 2025

inhibitory connectivity coverage

3 items

Seminar2
ePoster1
Domain spotlight

Explore how inhibitory connectivity research is advancing inside Neuro.

Visit domain