inhibitory coupling
Latest
Neuronal variability and spatiotemporal dynamics in cortical network models
Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.
Theory and modeling of whisking rhythm generation in the brainstem
The vIRt nucleus in the medulla, composed of mainly inhibitory neurons, is necessary for whisking rhythm generation. It innervates motoneurons in the facial nucleus (FN) that project to intrinsic vibrissa muscles. The nearby pre-Bötzinger complex (pBötC), which generates inhalation, sends inhibitory inputs to the vIRt nucleus which contribute to the synchronization of vIRt neurons. Lower-amplitude periodic whisking, however, can occur after decay of the pBötC signal. To explain how vIRt network generates these “intervening” whisks by bursting in synchrony, and how pBötC input induces strong whisks, we construct and analyze a conductance-based (CB) model of the vIRt circuit composed of hypothetical two groups, vIRtr and vIRtp, of bursting inhibitory neurons with spike-frequency adaptation currents and constant external inputs. The CB model is reduced to a rate model to enable analytical treatment. We find, analytically and computationally, that without pBötC input, periodic bursting states occur within a certain ranges of network connectivities. Whisk amplitudes increase with the level constant external input to the vIRT. With pBötC inhibition intact, the amplitude of the first whisk in a breathing cycle is larger than the intervening whisks for large pBötC input and small inhibitory coupling between the vIRT sub-populations. The pBötC input advances the next whisk and shortens its amplitude if it arrives at the beginning of the whisking cycle generated by the vIRT, and delays the next whisks if it arrives at the end of that cycle. Our theory provides a mechanism for whisking generation and reveals how whisking frequency and amplitude are controlled.
inhibitory coupling coverage
2 items