input resistance
Latest
A transcriptomic axis predicts state modulation of cortical interneurons
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.
How does the metabolically-expensive mammalian brain adapt to food scarcity?
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.
The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development
N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.
Neocortex saves energy by reducing coding precision during food scarcity
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. We addressed this in the visual cortex of awake mice using whole-cell patch clamp recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. We found that food restriction resulted in energy savings through a decrease in AMPA receptor conductance, reducing synaptic ATP usage by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.
Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses
There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.
Capacitance clamp - artificial capacitance in biological neurons via dynamic clamp
A basic time scale in neural dynamics from single cells to the network level is the membrane time constant - set by a neuron’s input resistance and its capacitance. Interestingly, the membrane capacitance appears to be more dynamic than previously assumed with implications for neural function and pathology. Indeed, altered membrane capacitance has been observed in reaction to physiological changes like neural swelling, but also in ageing and Alzheimer's disease. Importantly, according to theory, even small changes of the capacitance can affect neuronal signal processing, e.g. increase network synchronization or facilitate transmission of high frequencies. In experiment, robust methods to modify the capacitance of a neuron have been missing. Here, we present the capacitance clamp - an electrophysiological method for capacitance control based on an unconventional application of the dynamic clamp. In its original form, dynamic clamp mimics additional synaptic or ionic conductances by injecting their respective currents. Whereas a conductance directly governs a current, the membrane capacitance determines how fast the voltage responds to a current. Accordingly, capacitance clamp mimics an altered capacitance by injecting a dynamic current that slows down or speeds up the voltage response (Fig 1 A). For the required dynamic current, the experimenter only has to specify the original cell and the desired target capacitance. In particular, capacitance clamp requires no detailed model of present conductances and thus can be applied in every excitable cell. To validate the capacitance clamp, we performed numerical simulations of the protocol and applied it to modify the capacitance of cultured neurons. First, we simulated capacitance clamp in conductance based neuron models and analysed impedance and firing frequency to verify the altered capacitance. Second, in dentate gyrus granule cells from rats, we could reliably control the capacitance in a range of 75 to 200% of the original capacitance and observed pronounced changes in the shape of the action potentials: increasing the capacitance reduced after-hyperpolarization amplitudes and slowed down repolarization. To conclude, we present a novel tool for electrophysiology: the capacitance clamp provides reliable control over the capacitance of a neuron and thereby opens a new way to study the temporal dynamics of excitable cells.
input resistance coverage
6 items