intrinsic properties
Latest
Cholinergic modulation of the cerebellum
Many studies have investigated the major glutamatergic inputs to the cerebellum, mossy fibres and climbing fibres, however far less is known about its neuromodulatory inputs. In particular, anatomical studies have described cholinergic input to the cerebellum, yet little is known about its role(s). In this talk, I will present our recent findings which demonstrate that manipulating acetylcholine receptors in the cerebellum causes effects at both a cellular and behavioural level. Activating acetylcholine receptors alters the intrinsic properties and synaptic inputs of cerebellar output neurons, and blocking these receptors results in deficits in a range of behavioural tasks.
Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches
Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.
Toward a Comprehensive Classification of Mouse Retinal Ganglion Cells: Morphology, Function, Gene Expression, and Central Projections
I will introduce a web portal for the retinal neuroscience community to explore the catalog of mouse retinal ganglion cell (RGC) types, including data on light responses, correspondences with morphological types in EyeWire, and gene expression data from single-cell transcriptomics. Our current classification includes 43 types, accounting for 90% of the cells in EyeWire. Many of these cell types have new stories to tell, and I will cover two of them that represent opposite ends of the spectrum of levels of analysis in my lab. First, I will introduce the “Bursty Suppressed-by-Contrast” RGC and show how its intrinsic properties rather than its synaptic inputs differentiate its function from that of a different well-known RGC type. Second, I will present the histogram of cell types that project to the Olivary Pretectal Nucleus, focusing on the recently discovered M6 ipRGC.
Traveling UP states in the post-subiculum reveal an anatomical gradient of intrinsic properties
COSYNE 2023
The intrinsic properties of somatostatin interneurons in a Mecp2-deficient mouse model of Rett syndrome
FENS Forum 2024
intrinsic properties coverage
5 items