TopicNeuroscience

kernel methods

Latest

SeminarNeuroscienceRecording

Deep kernel methods

Laurence Aitchison
University of Bristol
Nov 25, 2021

Deep neural networks (DNNs) with the flexibility to learn good top-layer representations have eclipsed shallow kernel methods without that flexibility. Here, we take inspiration from deep neural networks to develop a new family of deep kernel method. In a deep kernel method, there is a kernel at every layer, and the kernels are jointly optimized to improve performance (with strong regularisation). We establish the representational power of deep kernel methods, by showing that they perform exact inference in an infinitely wide Bayesian neural network or deep Gaussian process. Next, we conjecture that the deep kernel machine objective is unimodal, and give a proof of unimodality for linear kernels. Finally, we exploit the simplicity of the deep kernel machine loss to develop a new family of optimizers, based on a matrix equation from control theory, that converges in around 10 steps.

SeminarNeuroscienceRecording

A function approximation perspective on neural representations

Cengiz Pehlevan
Harvard University
Dec 2, 2020

Activity patterns of neural populations in natural and artificial neural networks constitute representations of data. The nature of these representations and how they are learned are key questions in neuroscience and deep learning. In his talk, I will describe my group's efforts in building a theory of representations as feature maps leading to sample efficient function approximation. Kernel methods are at the heart of these developments. I will present applications to deep learning and neuronal data.

kernel methods coverage

2 items

Seminar2

Share your knowledge

Know something about kernel methods? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how kernel methods research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.