TopicNeuro

knowledge representation

2 Seminars

Latest

SeminarNeuroscienceRecording

Cross Domain Generalisation in Humans and Machines

Leonidas Alex Doumas
The University of Edinburgh
Feb 4, 2021

Recent advances in deep learning have produced models that far outstrip human performance in a number of domains. However, where machine learning approaches still fall far short of human-level performance is in the capacity to transfer knowledge across domains. While a human learner will happily apply knowledge acquired in one domain (e.g., mathematics) to a different domain (e.g., cooking; a vinaigrette is really just a ratio between edible fat and acid), machine learning models still struggle profoundly at such tasks. I will present a case that human intelligence might be (at least partially) usefully characterised by our ability to transfer knowledge widely, and a framework that we have developed for learning representations that support such transfer. The model is compared to current machine learning approaches.

SeminarNeuroscienceRecording

Evaluating different facets of category status for promoting spontaneous transfer

Sean Snoddy
Binghamton University
Nov 17, 2020

Existing accounts of analogical transfer highlight the importance of comparison-based schema abstraction in aiding retrieval of relevant prior knowledge from memory. In this talk, we discuss an alternative view, the category status hypothesis—which states that if knowledge of a target principle is represented as a relational category, it is easier to activate as a result of categorizing (as opposed to cue-based reminding)—and briefly review supporting evidence. We then further investigate this hypothesis by designing study tasks that promote different facets of category-level representations and assess their impact on spontaneous analogical transfer. A Baseline group compared two analogous cases; the remaining groups experienced comparison plus another task intended to impact the category status of the knowledge representation. The Intension group read an abstract statement of the principle with a supporting task of generating a new case. The Extension group read two more positive cases with the task of judging whether each exemplified the target principle. The Mapping group read a contrast case with the task of revising it into a positive example of the target principle (thereby providing practice moving in both directions between type and token, i.e., evaluating a given case relative to knowledge and using knowledge to generate a revised case). The results demonstrated that both Intension and Extension groups led to transfer improvements over Baseline (with the former demonstrating both improved accessibility of prior knowledge and ability to apply relational concepts). Implications for theories of analogical transfer are discussed.

knowledge representation coverage

2 items

Seminar2
Domain spotlight

Explore how knowledge representation research is advancing inside Neuro.

Visit domain
knowledge representation in Neuro - World Wide