TopicNeuroscience

linear discriminant analysis

Latest

SeminarNeuroscienceRecording

NMC4 Short Talk: Decoding finger movements from human posterior parietal cortex

Charles Guan
California Institute of Technology
Dec 1, 2021

Restoring hand function is a top priority for individuals with tetraplegia. This challenge motivates considerable research on brain-computer interfaces (BCIs), which bypass damaged neural pathways to control paralyzed or prosthetic limbs. Here, we demonstrate the BCI control of a prosthetic hand using intracortical recordings from the posterior parietal cortex (PPC). As part of an ongoing clinical trial, two participants with cervical spinal cord injury were each implanted with a 96-channel array in the left PPC. Across four sessions each, we recorded neural activity while they attempted to press individual fingers of the contralateral (right) hand. Single neurons modulated selectively for different finger movements. Offline, we accurately classified finger movements from neural firing rates using linear discriminant analysis (LDA) with cross-validation (accuracy = 90%; chance = 17%). Finally, the participants used the neural classifier online to control all five fingers of a BCI hand. Online control accuracy (86%; chance = 17%) exceeded previous state-of-the-art finger BCIs. Furthermore, offline, we could classify both flexion and extension of the right fingers, as well as flexion of all ten fingers. Our results indicate that neural recordings from PPC can be used to control prosthetic fingers, which may help contribute to a hand restoration strategy for people with tetraplegia.

linear discriminant analysis coverage

1 items

Seminar1

Share your knowledge

Know something about linear discriminant analysis? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how linear discriminant analysis research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.