local networks
Latest
Robust Encoding of Abstract Rules by Distinct Neuronal Populations in Primate Visual Cortex
I will discuss our recent evidence showing that information about abstract rules can be decoded from neuronal activity in primate visual cortex even in the absence of sensory stimulation. Furthermore, that rule information is greatest among neurons with the least visual activity and the weakest coupling to local neuronal networks. In addition, I will talk about recent developments in large-scale neurophysiological techniques in nonhuman primates.
The complexity of the ordinary – neural control of locomotion
Today, considerable information is available on the organization and operation of the neural networks that generate the motor output for animal locomotion, such as swimming, walking, or flying. In recent years, the question of which neural mechanisms are responsible for task-specific and flexible adaptations of locomotor patterns has gained increased attention in the field of motor control. I will report on advances we made with respect to this topic for walking in insects, i.e. the leg muscle control system of phasmids and fruit flies. I will present insights into the neural basis of speed control, heading, walking direction, and the role of ground contact in insect walking, both for local control and intersegmental coordination. For these changes in motor activity modifications in the processing of sensory feedback signals play a pivotal role, for instance for movement and load signals in heading and curve walking or for movement signals that contribute to intersegmental coordination. Our recent findings prompt future investigations that aim to elucidate the mechanisms by which descending and intersegmental signals interact with local networks in the generation of motor flexibility during walking in animals.
local networks coverage
2 items