TopicNeuroscience

MAPT V337M

Latest

SeminarNeuroscienceRecording

CRISPR-based functional genomics in iPSC-based models of brain disease

Martin Kampmann
UCSF Department of Biochemistry and Biophysics
Jul 30, 2020

Human genes associated with brain-related diseases are being discovered at an accelerating pace. A major challenge is an identification of the mechanisms through which these genes act, and of potential therapeutic strategies. To elucidate such mechanisms in human cells, we established a CRISPR-based platform for genetic screening in human iPSC-derived neurons, astrocytes and microglia. Our approach relies on CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), in which a catalytically dead version of the bacterial Cas9 protein recruits transcriptional repressors or activators, respectively, to endogenous genes to control their expression, as directed by a small guide RNA (sgRNA). Complex libraries of sgRNAs enable us to conduct genome-wide or focused loss-of-function and gain-of-function screens. Such screens uncover molecular players for phenotypes based on survival, stress resistance, fluorescent phenotypes, high-content imaging and single-cell RNA-Seq. To uncover disease mechanisms and therapeutic targets, we are conducting genetic modifier screens for disease-relevant cellular phenotypes in patient-derived neurons and glia with familial mutations and isogenic controls. In a genome-wide screen, we have uncovered genes that modulate the formation of disease-associated aggregates of tau in neurons with a tauopathy-linked mutation (MAPT V337M). CRISPRi/a can also be used to model and functionally evaluate disease-associated changes in gene expression, such as those caused by eQTLs, haploinsufficiency, or disease states of brain cells. We will discuss an application to Alzheimer’s Disease-associated genes in microglia.

MAPT V337M coverage

1 items

Seminar1

Share your knowledge

Know something about MAPT V337M? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how MAPT V337M research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.