Medicine
medicine
Latest
Decoding stress vulnerability
Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.
Jörn Diedrichsen
We are looking to recruit a new postdoctoral associate for a large collaborative project on the anatomical development of the human cerebellum. The overall goal of the project is to develop a high-resolution normative model of human cerebellar development across the entire life span. The successful candidate will join the Diedrichsen Lab (Western University, Canada) and will work with a team of colleagues at Erasmus Medical Center, the Donders Institute (Netherlands), McGill, Dalhousie, Sick Kids, and UBC (Canada).
Biomolecular condensates as drivers of neuroinflammation
Multisensory computations underlying flavor perception and food choice
Spatio-temporal Regulation of Gene Expression in Neurons: Insights from Imaging mRNAs Live in Action
The Promise of MitoQuinone Therapeutics in Experimental TBI
Circuit Mechanisms of Remote Memory
Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.
Defining Molecular Mechanisms Underlying Neurodegenerative Diseases
The Neurobiology of the Addicted Brain
An intranasal non-opioid treatment for opioid use disorder
Personalized medicine and predictive health and wellness: Adding the chemical component
Wearable sensors that detect and quantify biomarkers in retrievable biofluids (e.g., interstitial fluid, sweat, tears) provide information on human dynamic physiological and psychological states. This information can transform health and wellness by providing actionable feedback. Due to outdated and insufficiently sensitive technologies, current on-body sensing systems have capabilities limited to pH, and a few high-concentration electrolytes, metabolites, and nutrients. As such, wearable sensing systems cannot detect key low-concentration biomarkers indicative of stress, inflammation, metabolic, and reproductive status. We are revolutionizing sensing. Our electronic biosensors detect virtually any signaling molecule or metabolite at ultra-low levels. We have monitored serotonin, dopamine, cortisol, phenylalanine, estradiol, progesterone, and glucose in blood, sweat, interstitial fluid, and tears. The sensors are based on modern nanoscale semiconductor transistors that are straightforwardly scalable for manufacturing. We are developing sensors for >40 biomarkers for personalized continuous monitoring (e.g., smartwatch, wearable patch) that will provide feedback for treating chronic health conditions (e.g., perimenopause, stress disorders, phenylketonuria). Moreover, our sensors will enable female fertility monitoring and the adoption of more healthy lifestyles to prevent disease and improve physical and cognitive performance.
Development of a small molecule to promote neuroprotection and repair in progressive multiple sclerosis
Mapping the Brain‘s Visual Representations Using Deep Learning
Cerebellum-Basal Ganglia Interactions
The Roles of Distinct Functions of SynGAP1 in SYNGAP1-Related Disorders
Investigating dynamiCa++l mechanisms underlying cortical development and disease
Characterizing the causal role of large-scale network interactions in supporting complex cognition
Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders
In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Activity-Dependent Gene Regulation in Health and Disease
In the last of this year’s Brain Prize webinars, Elizabeth Pollina (Washington University, USA), Eric Nestler (Icahn School of Medicine Mount Sinai, USA) and Michelle Monje (Stanford University, USA) will present their work on activity-dependent gene regulation in health and disease. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by the winners of the 2023 Brain Prize, Michael Greenberg, Erin Schuman and Christine Holt.
Novel approaches to non-invasive neuromodulation for neuropsychiatric disorders; Effects of deep brain stimulation on brain function in obsessive-compulsive disorder
On Thursday, February 29th, we will host Damiaan Denys and Andrada Neacsiu. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep
The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.
Effects of Presenilin1 FAD mutants on brain angiogenic functions and neuroprotection in Alzheimer’s Disease
Virtual Brain Twins for Brain Medicine and Epilepsy
Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.
Use of brain imaging data to improve prescriptions of psychotropic drugs - Examples of ketamine in depression and antipsychotics in schizophrenia
The use of molecular imaging, particularly PET and SPECT, has significantly transformed the treatment of schizophrenia with antipsychotic drugs since the late 1980s. It has offered insights into the links between drug target engagement, clinical effects, and side effects. A therapeutic window for receptor occupancy is established for antipsychotics, yet there is a divergence of opinions regarding the importance of blood levels, with many downplaying their significance. As a result, the role of therapeutic drug monitoring (TDM) as a personalized therapy tool is often underrated. Since molecular imaging of antipsychotics has focused almost entirely on D2-like dopamine receptors and their potential to control positive symptoms, negative symptoms and cognitive deficits are hardly or not at all investigated. Alternative methods have been introduced, i.e. to investigate the correlation between approximated receptor occupancies from blood levels and cognitive measures. Within the domain of antidepressants, and specifically regarding ketamine's efficacy in depression treatment, there is limited comprehension of the association between plasma concentrations and target engagement. The measurement of AMPA receptors in the human brain has added a new level of comprehension regarding ketamine's antidepressant effects. To ensure precise prescription of psychotropic drugs, it is vital to have a nuanced understanding of how molecular and clinical effects interact. Clinician scientists are assigned with the task of integrating these indispensable pharmacological insights into practice, thereby ensuring a rational and effective approach to the treatment of mental health disorders, signaling a new era of personalized drug therapy mechanisms that promote neuronal plasticity not only under pathological conditions, but also in the healthy aging brain.
How Intermittent Bioenergetic Challenges Enhance Brain and Body Health
Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.
From the guts to the brain through adaptive immunity in the prevention of Alzheimer’ disease
Dr. Pasinetti is the Saunders Family Chair and Professor of Neurology at Icahn School of medicine at Mount Sinai, New York. His studies allowed him to develop novel therapeutic approaches through investigation of preventable risk factors including mood disorders in the promotion of resilience against neurodegenerative disorder. In his presentation Dr. Pasinetti will discuss novel concepts about the gut-brain axis in mechanisms associated to peripheral adaptive immunity as therapeutic targets to mitigate the onset and the progression of Alzheimer’s disease and other form of dementia.
From pecking order to ketamine - neural mechanism of social and emotional behavior
Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.
From pecking order to ketamine - neural mechanism of social and emotional behavior
Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.
Therapeutic Strategies for Autism: Targeting Three Levels of the Central Dogma of Molecular Biology with a Focus on SYNGAP1
May Webinar
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.
How the brain uses experience to construct its multisensory capabilities
This talk will not be recorded
How does the primary tumor imprint a dormancy signature in disseminated tumor cells?
ALBA webinar series - Breaking down the ivory tower: Ep. 2 Philip Haydon
With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 2nd episode, Prof. Philip Haydon (Tufts University School of Medicine, Boston, USA) will talk about his research and experience. Prof. Philip runs an active laboratory researching a multitude of neurological disorders (including epilepsy). He is also President of Sail For Epilepsy. His mission is to inspire people with epilepsy, raise funds to support research for a cure, promote awareness of epilepsy and educate the public.
Harnessing mRNA metabolism for the development of precision gene therapy
Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development
Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).
Neuron-glial interactions in health and disease: from cognition to cancer
In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.
Cell-type specific alterations underpinning convergent ASD phenotypes in PACS1 neurodevelopmental disorder
Brain mosaicism in epileptogenic cortical malformations
Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.
Monitoring gait outcomes in rehabilitation with human pose estimation and wearable sensors
Love, death, and oxytocin: the challenges of mouse maternal care
Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders
On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies
Microglial efferocytosis: Diving into the Alzheimer's Disease gene pool
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer’s disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches." https://doi.org/10.1016/j.neuron.2022.10.015
SWEBAGS conference 2022
NEW TREATMENTS FOR PAIN: Unmet needs and how to meet them
“Of pain you could wish only one thing: that it should stop. Nothing in the world was so bad as physical pain. In the face of pain there are no heroes.- George Orwell, ‘1984’ " "Neuroscience has revealed the secrets of the brain and nervous system to an extent that was beyond the realm of imagination just 10-20 years ago, let alone in 1949 when Orwell wrote his prophetic novel. Understanding pain, however, presents a unique challenge to academia, industry and medicine, being both a measurable physiological process as well as deeply personal and subjective. Given the millions of people who suffer from pain every day, wishing only, “that it should stop”, the need to find more effective treatments cannot be understated." "‘New treatments for pain’ will bring together approximately 120 people from the commercial, academic, and not-for-profit sectors to share current knowledge, identify future directions, and enable collaboration, providing delegates with meaningful and practical ways to accelerate their own work into developing treatments for pain.
Neural Coding for Flexible Behavior in Prefrontal Cortex
Using multisensory plasticity to rehabilitate vision
Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy
Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispecic antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents inuence the coordination mode. Target-specic radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.
medicine coverage
51 items