← Back

Memory Engrams

Topic spotlight
TopicNeuro

memory engrams

Discover seminars, jobs, and research tagged with memory engrams across Neuro.
2 curated items2 Seminars
Updated over 4 years ago
2 items · memory engrams

Latest

2 results
SeminarNeuroscience

Imaging memory consolidation in wakefulness and sleep

Monika Schönauer
Albert-Ludwigs-Univery of Freiburg
Jun 17, 2021

New memories are initially labile and have to be consolidated into stable long-term representations. Current theories assume that this is supported by a shift in the neural substrate that supports the memory, away from rapidly plastic hippocampal networks towards more stable representations in the neocortex. Rehearsal, i.e. repeated activation of the neural circuits that store a memory, is thought to crucially contribute to the formation of neocortical long-term memory representations. This may either be achieved by repeated study during wakefulness or by a covert reactivation of memory traces during offline periods, such as quiet rest or sleep. My research investigates memory consolidation in the human brain with multivariate decoding of neural processing and non-invasive in-vivo imaging of microstructural plasticity. Using pattern classification on recordings of electrical brain activity, I show that we spontaneously reprocess memories during offline periods in both sleep and wakefulness, and that this reactivation benefits memory retention. In related work, we demonstrate that active rehearsal of learning material during wakefulness can facilitate rapid systems consolidation, leading to an immediate formation of lasting memory engrams in the neocortex. These representations satisfy general mnemonic criteria and cannot only be imaged with fMRI while memories are actively processed but can also be observed with diffusion-weighted imaging when the traces lie dormant. Importantly, sleep seems to hold a crucial role in stabilizing the changes in the contribution of memory systems initiated by rehearsal during wakefulness, indicating that online and offline reactivation might jointly contribute to forming long-term memories. Characterizing the covert processes that decide whether, and in which ways, our brains store new information is crucial to our understanding of memory formation. Directly imaging consolidation thus opens great opportunities for memory research.

SeminarNeuroscienceRecording

Restless engrams: the origin of continually reconfiguring neural representations

Timothy O'Leary
University of Cambridge
Mar 5, 2021

During learning, populations of neurons alter their connectivity and activity patterns, enabling the brain to construct a model of the external world. Conventional wisdom holds that the durability of a such a model is reflected in the stability of neural responses and the stability of synaptic connections that form memory engrams. However, recent experimental findings have challenged this idea, revealing that neural population activity in circuits involved in sensory perception, motor planning and spatial memory continually change over time during familiar behavioural tasks. This continual change suggests significant redundancy in neural representations, with many circuit configurations providing equivalent function. I will describe recent work that explores the consequences of such redundancy for learning and for task representation. Despite large changes in neural activity, we find cortical responses in sensorimotor tasks admit a relatively stable readout at the population level. Furthermore, we find that redundancy in circuit connectivity can make a task easier to learn and compensate for deficiencies in biological learning rules. Finally, if neuronal connections are subject to an unavoidable level of turnover, the level of plasticity required to optimally maintain a memory is generally lower than the total change due to turnover itself, predicting continual reconfiguration of an engram.

memory engrams coverage

2 items

Seminar2
Domain spotlight

Explore how memory engrams research is advancing inside Neuro.

Visit domain