mental experiences
Latest
What is the function of auditory cortex when it develops in the absence of acoustic input?
Cortical plasticity is the neural mechanism by which the cerebrum adapts itself to its environment, while at the same time making it vulnerable to impoverished sensory or developmental experiences. Like the visual system, auditory development passes through a series of sensitive periods in which circuits and connections are established and then refined by experience. Current research is expanding our understanding of cerebral processing and organization in the deaf. In the congenitally deaf, higher-order areas of "deaf" auditory cortex demonstrate significant crossmodal plasticity with neurons responding to visual and somatosensory stimuli. This crucial cerebral function results in compensatory plasticity. Not only can the remaining inputs reorganize to substitute for those lost, but this additional circuitry also confers enhanced abilities to the remaining systems. In this presentation we will review our present understanding of the structure and function of “deaf” auditory cortex using psychophysical, electrophysiological, and connectional anatomy approaches and consider how this knowledge informs our expectations of the capabilities of cochlear implants in the developing brain.
Synaesthesia as a Model System for Understanding Variation in the Human Mind and Brain
During this talk, I will seek to reposition synaesthesia as model system for understanding variation in the construction of the human mind and brain. People with synaesthesia inhabit a remarkable mental world in which numbers can be coloured, words can have tastes, and music is a visual spectacle. Synaesthesia has now been documented for over two hundred years but key questions remain unanswered about why it exists, and what such conditions might mean for theories of the human mind. I will argue that we need to rethink synaesthesia as not just representing exceptional experiences, but as a product of an unusual neurodevelopmental cascade from genes to brain to cognition of which synaesthesia is only one outcome. Rather than synaesthesia being a kind of 'dangling qualia' (atypical experiences attached to a typical mind/brain) it should be thought of as unusual experiences that accompany an unusual mind/brain. Specifically, differences in the brains of synaesthetes support a distinctive way of thinking (enhanced memory, imagery etc.) and may also predispose towards particular clinical vulnerabilities. It is this neurodiverse phenotype that is an important object of study in its own right and may explain any adaptive value for having synaesthesia.
mental experiences coverage
2 items