TopicNeuro

mental model

10 Seminars3 ePosters

Latest

SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 3, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscienceRecording

Modelling metaphor comprehension as a form of analogizing

Gerard Steen
University of Amsterdam
Nov 30, 2022

What do people do when they comprehend language in discourse? According to many psychologists, they build and maintain cognitive representations of utterances in four complementary mental models for discourse that interact with each other: the surface text, the text base, the situation model, and the context model. When people encounter metaphors in these utterances, they need to incorporate them into each of these mental representations for the discourse. Since influential metaphor theories define metaphor as a form of (figurative) analogy, involving cross-domain mapping of a smaller or greater extent, the general expectation has been that metaphor comprehension is also based on analogizing. This expectation, however, has been partly borne out by the data, but not completely. There is no one-to-one relationship between metaphor as (conceptual) structure (analogy) and metaphor as (psychological) process (analogizing). According to Deliberate Metaphor Theory (DMT), only some metaphors are handled by analogy. Instead, most metaphors are presumably handled by lexical disambiguation. This is a hypothesis that brings together most metaphor research in a provocatively new way: it means that most metaphors are not processed metaphorically, which produces a paradox of metaphor. In this talk I will sketch out how this paradox arises and how it can be resolved by a new version of DMT, which I have described in my forthcoming book Slowing metaphor down: Updating Deliberate Metaphor Theory (currently under review). In this theory, the distinction between, but also the relation between, analogy in metaphorical structure versus analogy in metaphorical process is of central importance.

SeminarNeuroscience

Two lessons from experimental models of generalized absence epilepsy, myelin plasticity dependent epileptogenesis, and circuits of cognitive comorbidities

John Huguenard
Stanford University
Apr 20, 2022
SeminarNeuroscienceRecording

Noise-induced properties of active dendrites

Farzada Farkhooi
Humboldt University Berlin
Nov 17, 2021

Neuronal dendritic trees display a wide range of nonlinear input integrations due to their voltage-dependent active calcium channels. We reveal that in vivo-like fluctuating input enhances nonlinearity substantially in a single dendritic compartment and shifts the input-output relation to exhibiting nonmonotonous or bistable dynamics. In particular, with the slow activation of calcium dynamics, we analyze noise-induced bistability and its timescales. We show bistability induces long-timescale fluctuation that can account for observed dendritic plateau potentials in vivo conditions. In a multicompartmental model neuron with realistic synaptic input, we show that noise-induced bistability persists in a wide range of parameters. Using Fredholm's theory to calculate the spiking rate of multivariable neurons, we discuss how dendritic bistability shifts the spiking dynamics of single neurons and its implications for network phenomena in the processing of in vivo–like fluctuating input.

SeminarNeuroscienceRecording

Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses

Willem Wybo
Morrison lab, Forschungszentrum Jülich, Germany
Jun 10, 2021

There is little consensus on the level of spatial complexity at which dendrites operate. On the one hand, emergent evidence indicates that synapses cluster at micrometer spatial scales. On the other hand, most modelling and network studies ignore dendrites altogether. This dichotomy raises an urgent question: what is the smallest relevant spatial scale for understanding dendritic computation? We have developed a method to construct compartmental models at any level of spatial complexity. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models. Thus, we are able to systematically construct passive as well as active dendrite models at varying degrees of spatial complexity. We evaluate which elements of the dendritic computational repertoire are captured by these models. We show that many canonical elements of the dendritic computational repertoire can be reproduced with few compartments. For instance, for a model to behave as a two-layer network, it is sufficient to fit a reduced model at the soma and at locations at the dendritic tips. In the basal dendrites of an L2/3 pyramidal model, we reproduce the backpropagation of somatic action potentials (APs) with a single dendritic compartment at the tip. Further, we obtain the well-known Ca-spike coincidence detection mechanism in L5 Pyramidal cells with as few as eleven compartments, the requirement being that their spacing along the apical trunk supports AP backpropagation. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Consequently, when the average conductance load on distal synapses is constant, the dendritic tree can be simplified while appropriately decreasing synaptic weights. When the conductance level fluctuates strongly, for instance through a-priori unpredictable fluctuations in NMDA activation, a constant weight rescale factor cannot be found, and the dendrite cannot be simplified. We have created an open source Python toolbox (NEAT - https://neatdend.readthedocs.io/en/latest/) that automatises the simplification process. A NEST implementation of the reduced models, currently under construction, will enable the simulation of few-compartment models in large-scale networks, thus bridging the gap between cellular and network level neuroscience.

SeminarNeuroscienceRecording

A Changing View of Vision: From Molecules to Behavior in Zebrafish

Herwig Baier
Max PLanck Institute
May 3, 2021

All sensory perception and every coordinated movement, as well as feelings, memories and motivation, arise from the bustling activity of many millions of interconnected cells in the brain. The ultimate function of this elaborate network is to generate behavior. We use zebrafish as our experimental model, employing a diverse array of molecular, genetic, optical, connectomic, behavioral and computational approaches. The goal of our research is to understand how neuronal circuits integrate sensory inputs and internal state and convert this information into behavioral responses.

SeminarNeuroscienceRecording

Mental Simulation, Imagination, and Model-Based Deep RL

Jessica Hamrick
Deepmind
Apr 9, 2021

Mental simulation—the capacity to imagine what will or what could be—is a salient feature of human cognition, playing a key role in a wide range of cognitive abilities. In artificial intelligence, the last few years have seen the development of methods which are analogous to mental models and mental simulation. In this talk, I will discuss recent methods in deep learning for constructing such models from data and learning to use them via reinforcement learning, and compare such approaches to human mental simulation. While a number of challenges remain in matching the capacity of human mental simulation, I will highlight some recent progress on developing more compositional and efficient model-based algorithms through the use of graph neural networks and tree search.

SeminarNeuroscience

What is hippocampal sclerosis? A cell-type specific perspective

Liset de la Prida
INSTITUTO CAJAL
Jan 20, 2021

Temporal lobe epilepsy is considered a neuronal microcircuit dysfunction, yet mechanisms are poorly understood. Here we will discuss recent data on cell-type specific alterations of hippocampal microcircuit function in experimental models of temporal lobe epilepsy. We will highlight the importance of leveraging on cellular heterogeneity to better understand the complexities accompanying hippocampal sclerosis.

SeminarNeuroscience

Carnosine negatively modulates pro-oxidant activities of M1 peripheral macrophages and prevents neuroinflammation induced by amyloid-β in microglial cells

Giuseppe Caruso
Department of Drug Sciences, University of Catania
Oct 1, 2020

Carnosine is a natural dipeptide widely distributed in mammalian tissues and exists at particularly high concentrations in skeletal and cardiac muscles and brain. A growing body of evidence shows that carnosine is involved in many cellular defense mechanisms against oxidative stress, including inhibition of amyloid-β (Aβ) aggregation, modulation of nitric oxide (NO) metabolism, and scavenging both reactive nitrogen and oxygen species. Different types of cells are involved in the innate immune response, with macrophage cells representing those primarily activated, especially under different diseases characterized by oxidative stress and systemic inflammation such as depression and cardiovascular disorders. Microglia, the tissue-resident macrophages of the brain, are emerging as a central player in regulating key pathways in central nervous system inflammation; with specific regard to Alzheimer’s disease (AD) these cells exert a dual role: on one hand promoting the clearance of Aβ via phagocytosis, on the other hand increasing neuroinflammation through the secretion of inflammatory mediators and free radicals. The activity of carnosine was tested in an in vitro model of macrophage activation (M1) (RAW 264.7 cells stimulated with LPS + IFN-γ) and in a well-validated model of Aβ-induced neuroinflammation (BV-2 microglia treated with Aβ oligomers). An ample set of techniques/assays including MTT assay, trypan blue exclusion test, high performance liquid chromatography, high-throughput real-time PCR, western blot, atomic force microscopy, microchip electrophoresis coupled to laser-induced fluorescence, and ELISA aimed to evaluate the antioxidant and anti-inflammatory activities of carnosine was employed. In our experimental model of macrophage activation (M1), therapeutic concentrations of carnosine exerted the following effects: 1) an increased degradation rate of NO into its non-toxic end-products nitrite and nitrate; 2) the amelioration of the macrophage energy state, by restoring nucleoside triphosphates and counterbalancing the changes in ATP/ADP, NAD+/NADH and NADP+/NADPH ratio obtained by LPS + IFN-γ induction; 3) a reduced expression of pro-oxidant enzymes (NADPH oxidase, Cyclooxygenase-2) and of the lipid peroxidation product malondialdehyde; 4) the rescue of antioxidant enzymes expression (Glutathione peroxidase 1, Superoxide dismutase 2, Catalase); 5) an increased synthesis of transforming growth factor-β1 (TGF-β1) combined with the negative modulation of interleukines 1β and 6 (IL-1β and IL-6), and 6) the induction of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). In our experimental model of Aβ-induced neuroinflammation, carnosine: 1) prevented cell death in BV-2 cells challenged with Aβ oligomers; 2) lowered oxidative stress by decreasing the expression of inducible nitric oxide synthase and NADPH oxidase, and the concentrations of nitric oxide and superoxide anion; 3) decreased the secretion of pro-inflammatory cytokines such as IL-1β simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1; 4) prevented Aβ-induced neurodegeneration in primary mixed neuronal cultures challenged with Aβ oligomers and these neuroprotective effects was completely abolished by SB431542, a selective inhibitor of type-1 TGF-β receptor. Overall, our data suggest a novel multimodal mechanism of action of carnosine underlying its protective effects in macrophages and microglia and the therapeutic potential of this dipeptide in counteracting pro-oxidant and pro-inflammatory phenomena observed in different disorders characterized by elevated levels of oxidative stress and inflammation such as depression, cardiovascular disorders, and Alzheimer’s disease.

SeminarNeuroscience

Rational thoughts in neural codes

Xaq Pitkow
Baylor College of Medicine & Rice University
May 8, 2020

First, we describe a new method for inferring the mental model of an animal performing a natural task. We use probabilistic methods to compute the most likely mental model based on an animal’s sensory observations and actions. This also reveals dynamic beliefs that would be optimal according to the animal’s internal model, and thus provides a practical notion of “rational thoughts.” Second, we construct a neural coding framework by which these rational thoughts, their computational dynamics, and actions can be identified within the manifold of neural activity. We illustrate the value of this approach by training an artificial neural network to perform a generalization of a widely used foraging task. We analyze the network’s behaviour to find rational thoughts, and successfully recover the neural properties that implemented those thoughts, providing a way of interpreting the complex neural dynamics of the artificial brain. Joint work with Zhengwei Wu, Minhae Kwon, Saurabh Daptardar, and Paul Schrater.

ePosterNeuroscience

Experimental model for strain-induced mechanical neurostimulation on human progenitor neurons

Erdost Yildiz, Mertcan Han, Linda Werneck, Marc-Andre Keip, Metin Sitti, Michael Ortiz

FENS Forum 2024

ePosterNeuroscience

Role of complement in regulating glutamate transmission in an experimental model of multiple sclerosis

Alice Taddeucci, Guendalina Olivero, Hanna Trebesova, Maria Cristina Gagliani, Katia Cortese, Massimo Grilli, Anna Pittaluga

FENS Forum 2024

ePosterNeuroscience

An in silico population of compartmental models of neurons from primary hippocampal cultures

Matus Tomko, Martin Mittag, Lucia Dubiel, Alžbeta Idunková, Katarína Ondáčová, Stanislava Bukatová, Michal Dubovický, Peter Jedlicka, Ľubica Lacinová

FENS Forum 2024

mental model coverage

13 items

Seminar10
ePoster3
Domain spotlight

Explore how mental model research is advancing inside Neuro.

Visit domain